مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

547
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

557
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

توسعه روش ترکیبی موجک-شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای مدلسازی چند ایستگاهه بارش-رواناب با استفاده از ابزارهای خوشه بندی و اطلاعات مشترک

صفحات

 صفحه شروع 49 | صفحه پایان 62

چکیده

 در این مقاله پیش بینی چند ایستگاهه رواناب با استفاده از تبدیل موجک و شبکه عصبی مصنوعی خودسازمانده و مدل های هوش مصنوعی در حوضه آبریز Little River Watershed (LRW) انجام گردید. بطوریکه سری های زمانی رواناب توسط تبدیل موجک تجزیه گشته و سپس زیرسری های تجزیه شده توسط شبکه عصبی مصنوعی خودسازمانده خوشه بندی گردید. در ادامه, معیار استخراج ویژگی (اطلاعات مشترک) برای انتخاب نماینده از هر خوشه جهت ورود به مدلهای هوش مصنوعی شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای پیش بینی رواناب خروجی حوضه آبریز LRW بکار گرفته شدند. مدلسازی چند ایستگاهه بارش-رواناب بر اساس خاصیت فصلی بودن انجام شده و با مدلسازی چند ایستگاهه بر اساس خاصیت مارکف مقایسه گردید. نتایج نشان داد که مدلهای هوش مصنوعی ترکیب شده با تبدیل موجک, شبکه عصبی مصنوعی خودسازمانده و اطلاعات مشترک توانایی پیش بینی رواناب چند ایستگاهه را نسبت به مدل های هوش مصنوعی که از خاصیت مارکف بهره می برند تا 23 درصد بهبود می بخشد. بطور کلی, استفاده از خاصیت فصلی بودن پدیده ها به همراه کاهش ابعاد ورودی ها, می تواند به مدل های هوش مصنوعی در جهت استفاده از اطلاعات خالص داده های مشاهداتی کمک کند.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    عندلیب، غلامرضا، نورانی، وحید، منیری فر، حسین، و شرقی، الناز. (1398). توسعه روش ترکیبی موجک-شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای مدلسازی چند ایستگاهه بارش-رواناب با استفاده از ابزارهای خوشه بندی و اطلاعات مشترک. رویکردهای نوین در مهندسی عمران، 3(2 )، 49-62. SID. https://sid.ir/paper/266210/fa

    Vancouver: کپی

    عندلیب غلامرضا، نورانی وحید، منیری فر حسین، شرقی الناز. توسعه روش ترکیبی موجک-شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای مدلسازی چند ایستگاهه بارش-رواناب با استفاده از ابزارهای خوشه بندی و اطلاعات مشترک. رویکردهای نوین در مهندسی عمران[Internet]. 1398؛3(2 ):49-62. Available from: https://sid.ir/paper/266210/fa

    IEEE: کپی

    غلامرضا عندلیب، وحید نورانی، حسین منیری فر، و الناز شرقی، “توسعه روش ترکیبی موجک-شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای مدلسازی چند ایستگاهه بارش-رواناب با استفاده از ابزارهای خوشه بندی و اطلاعات مشترک،” رویکردهای نوین در مهندسی عمران، vol. 3، no. 2 ، pp. 49–62، 1398، [Online]. Available: https://sid.ir/paper/266210/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا