مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

350
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

563
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

پیش بینی طرح اختلاط بهینه برای بهسازی خاک رس نرم با استفاده از شبکه های عصبی مصنوعی

صفحات

 صفحه شروع 147 | صفحه پایان 158

کلیدواژه

شبکه عصبی (GRNN)Q2
الگوریتم ژنتیک (برنامه ریزی بیان ژن (GEP))Q2

چکیده

 استفاده و کاربرد شبیه سازی مصنوعی در پیش بینی رفتار مصالح علی الخصوص هنگامی که نتایج واقعی داشته باشیم از نظر زمان و هزینه از اهمیت ویژه ای برخوردار است. بر این اساس در این پژوهش داده های آزمایش بدست آمده از آزمایش تک محوری روی نمونه های خاک تثبیت شده توسط آهک, پسماند و سیلیکات سدیم با شبکه عصبی (GRNN) و الگوریتم ژنتیک (برنامه ریزی بیان ژن (GEP)) مورد بررسی قرار گرفته است. بنابراین با توجه به نتایج مقاومت فشاری محدود نشده برای درصدهای محدودی که آزمایش انجام شده است شبیه سازی مصنوعی انجام و راستی آزمایی صورت گرفته است سپس با توسعه شبکه عصبی و الگوریتم ژنتیک برای حالت ها و درصدهای مختلف اختلاط در بهسازی خاک, درصد اختلاط بهینه تعیین شده است که با توجه به نتایج بدست آمده از مدل الگوریتم ژنتیک, طرح اختلاط بهینه برای این نوع خاک رس در 6 درصد آهک, 6 درصد پسماند صنعتی و 1. 5 درصد سیلیکات سدیم می باشد. نتایج شبکه عصبی دارای قدرت پیش بینی مناسب تری نسبت به الگوریتم ژنتیک می باشد به طوری که بهترین پیش بینی برای مدل 90 روزه شبکه عصبی با مقدار R^2 و RMSE به ترتیب برابر با 0. 998 و 0. 019 وکمترین پیش بینی برای مدل 7 روزه الگوریتم ژنتیک با مقدار R^2 و RMSE به ترتیب برابر با 0. 967 و 0. 059 می باشد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    بی باک، حدیث، خزایی، جهانگیر، و مویدی، حسین. (1398). پیش بینی طرح اختلاط بهینه برای بهسازی خاک رس نرم با استفاده از شبکه های عصبی مصنوعی. مدل سازی در مهندسی، 17(57 )، 147-158. SID. https://sid.ir/paper/365052/fa

    Vancouver: کپی

    بی باک حدیث، خزایی جهانگیر، مویدی حسین. پیش بینی طرح اختلاط بهینه برای بهسازی خاک رس نرم با استفاده از شبکه های عصبی مصنوعی. مدل سازی در مهندسی[Internet]. 1398؛17(57 ):147-158. Available from: https://sid.ir/paper/365052/fa

    IEEE: کپی

    حدیث بی باک، جهانگیر خزایی، و حسین مویدی، “پیش بینی طرح اختلاط بهینه برای بهسازی خاک رس نرم با استفاده از شبکه های عصبی مصنوعی،” مدل سازی در مهندسی، vol. 17، no. 57 ، pp. 147–158، 1398، [Online]. Available: https://sid.ir/paper/365052/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button