A control strategy on a hybrid vehicle can be implemented through different methods. In this paper, the Cerebellar Model Articulation Controller (CMAC) and Radial Basis Function (RBF) neural networks were applied to develop an optimal control strategy for a split parallel hydraulic hybrid vehicle. These networks contain a nonlinear mapping, and, also, the fast learning procedure has made them desirable for online control. The RBF network was constructed with the use of the K-mean clustering method, and the CMAC network was investigated for different association factors. Results show that the binary CMAC has better performance over the RBF network. Also, the hybridization of the vehicle results in considerable reduction in fuel consumption.