فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

نشریه: 

MATHEMATICS

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    10
  • شماره: 

    6
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    25
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 25

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

EPPSTEIN D.

اطلاعات دوره: 
  • سال: 

    1999
  • دوره: 

    -
  • شماره: 

    5
  • صفحات: 

    160-166
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    185
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 185

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    205-215
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    136
  • دانلود: 

    23
چکیده: 

Distance-based CLUSTERING methods categorize samples by optimizing a global criterion, finding ellipsoid clusters with roughly equal sizes. In contrast, density-based CLUSTERING techniques form clusters with arbitrary shapes and sizes by optimizing a local criterion. Most of these methods have several hyper-parameters, and their performance is highly dependent on the hyper-parameter setup. Recently, a Gaussian Density Distance (GDD) approach was proposed to optimize local criteria in terms of distance and density properties of samples. GDD can find clusters with different shapes and sizes without any free parameters. However, it may fail to discover the appropriate clusters due to the interfering of clustered samples in estimating the density and distance properties of remaining unclustered samples. Here, we introduce Adaptive GDD (AGDD), which eliminates the inappropriate effect of clustered samples by adaptively updating the parameters during CLUSTERING. It is stable and can identify clusters with various shapes, sizes, and densities without adding extra parameters. The distance metrics calculating the dissimilarity between samples can affect the CLUSTERING performance. The effect of different distance measurements is also analyzed on the method. The experimental results conducted on several well-known datasets show the effectiveness of the proposed AGDD method compared to the other well-known CLUSTERING methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 136

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 23 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

SHAH J.R. | MUSTAFA M.B.

نشریه: 

AMERICAN BUSINESS REVIEW

اطلاعات دوره: 
  • سال: 

    2000
  • دوره: 

    18
  • شماره: 

    2
  • صفحات: 

    80-86
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    193
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 193

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

LOH P. | PAN Y.

اطلاعات دوره: 
  • سال: 

    2009
  • دوره: 

    2
  • شماره: 

    2
  • صفحات: 

    131-141
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    143
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 143

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Seifpour Masoud | KARIMI ABBAS

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    3
تعامل: 
  • بازدید: 

    121
  • دانلود: 

    0
چکیده: 

OCCURRENCES OF EVENTS AND ACCIDENTS IN RAILWAYS ARE INEVITABLE TODAY AND EFFECTIVE FACTORS IN THESE EVENTS ARE ATMOSPHERIC AND STOCHASTIC AGENTS. THESE AGENTS CAN BE PREDICTED TO AVOID THESE EVENTS AND TAKE APPROPRIATE MEASURES TO REDUCE THEIR OCCURRENCES. THEREFORE, IT IS REQUIRED TO MAKE AN IMMUNIZATION IN ENTIRE RAILWAY NETWORK TO REDUCE NUMBER OF ACCIDENTS. EXACT ANALYSIS OF THE ACCIDENTS AND THE CAUSES IS THE MOST IMPORTANT ACTIONS OF THE IMMUNIZATION. USING FCM ALGORITHM AS A CLUSTERING TOOL IN DATA MINING TECHNIQUES, THE ACCIDENTS HAVE BEEN CLASSIFIED IN DIFFERENT CLUSTERS BASED ON SIMILARITY IN BEHAVIOR. FINALLY, MODEL OF RAILWAY ACCIDENT HAS BEEN MODELED BY NEURAL NETWORK. THE CLUSTERS ARE ANALYZED BASED ON TYPE OF THE EVENTS. THE RESULTS OF THIS STUDY CAN BE USED TO PROVIDE SAFETY IN THE RAIL NETWORK.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 121

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
همکاران: 

اطلاعات : 
  • تاریخ پایان: 

    1395
تعامل: 
  • بازدید: 

    236
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 236

اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    17
  • شماره: 

    4
  • صفحات: 

    277-286
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    789
  • دانلود: 

    204
چکیده: 

متون کوتاه رسانه های اجتماعی مانند توییتر اطلاعات زیادی در مورد موضوع های داغ و افکار عمومی ارائه می دهند. برای درک بهتر اطلاعات دریافتی از شبکه های اجتماعی، شناسایی و ردیابی موضوع امری ضروری است. در بسیاری از روش های ارائه شده در این زمینه، تعداد موضوع ها باید از پیش مشخص باشد و نمی تواند در طول زمان تغییر کند. از این منظر، این روش ها برای داده های در حال افزایش و پویا مناسب نیستند. همچنین مدل های تکاملی موضوعی غیر پارامتری به دلیل مشکل کمبود داده ها، بر روی متون کوتاه عملکرد مناسبی ندارند. در این مقاله، یک مدل خوشه بندی تکاملی جدید ارائه کرده ایم که به طور ضمنی از فرایند رستوران چینی وابسته به فاصله (dd-CRP) الهام گرفته است. در روش ارائه شده برای حل مشکل کمبود داده ها، از اطلاعات شبکه اجتماعی در کنار شباهت متنی، برای بهبود ارزیابی شباهت بین توییت ها استفاده شده است. همچنین در روش پیشنهادی، برخلاف اکثر روش های مطرح شده در این زمینه، تعداد خوشه ها به صورت خودکار محاسبه می شود. در واقع در این روش، توییت ها با احتمالی متناسب با شباهتشان به هم متصل می شوند و مجموعه ای از این اتصال ها یک موضوع را تشکیل می دهد. برای افزایش سرعت اجرای الگوریتم، از یک روش خلاصه سازی مبتنی بر خوشه بندی استفاده نموده ایم. ارزیابی روش بر روی مجموعه داده واقعی که در طول دو ماه و نیم از شبکه اجتماعی توییتر جمع آوری شده است، انجام می شود. ارزیابی به صورت خوشه بندی متون و مقایسه بین آنها می باشد. نتایج ارزیابی نشان می دهد که روش پیشنهادی نسبت به روش های مقایسه شده دارای انسجام موضوعی بهتری بوده و می تواند به طور مؤثر برای تشخیص موضوع بر روی متون کوتاه رسانه های اجتماعی استفاده گردد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 789

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 204 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    14
  • شماره: 

    1
  • صفحات: 

    1-12
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    51
  • دانلود: 

    0
چکیده: 

The most important challenge in wireless sensor NETWORKs is to extend the NETWORK lifetime, which is directly related to the energy consumption. CLUSTERING is one of the well-known energy-saving solutions in WSNs. To put this in perspective, the most studies repeated cluster head selection methods for CLUSTERING in each round, which increases the number of sent and received messages. what's more, inappropriate cluster head selection and unbalanced clusters have increased energy dissipation. To create balanced clusters and reduce energy consumption, we used a centralized NETWORK and relay nodes, respectively. Besides, we applied a metaheuristic algorithm to select the optimal cluster heads because classical methods are easily trapped in local minimum. In this paper, the Grey Wolf Optimizer(GWO), which is a simple and flexible algorithm that is capable of balancing the two phases of exploration and exploitation is used. To prolong the NETWORK lifetime and reduce energy consumption in cluster head nodes, we proposed a centralized multiple CLUSTERING based on GWO that uses both energy and distance in cluster head selection. This research is compared with classical and metaheuristic algorithms in three scenarios based on the criteria of "NETWORK Lifetime", "Number of dead nodes in each round" and "Total Remaining Energy(TRE) in the cluster head and relay nodes. The simulation results show that our research performs better than other methods. In addition, to analyze the scalability, it has been evaluated in terms of "number of nodes", "NETWORK dimensions" and "BS location". Regarding to the results, by rising 2 and 5 times of these conditions, the NETWORK performance is increased by 1. 5 and 2 times, respectively.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 51

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

SARGOLZAEY HADI

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    20-26
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    220
  • دانلود: 

    0
چکیده: 

Mobile Ad Hoc NETWORK (MANET) is a special and attractive type of new wireless NETWORKs. It is an autonomous system that can dynamically be set up anywhere and anytime without using any pre-existing NETWORK infrastructure and its mobile hosts are free to move randomly. Host mobility in MANET causes failure of wireless links between nodes and breaks all the routes that use these links.Consequently, route reconstructions are needed, which is one of the most crucial issues for this type of wireless NETWORKs. There are two common solutions to this problem which increase the route reliability (lifetime) in MANETs; increasing the reliability of the links by using more reliable links and multipath route discovery. In this paper, both these schemes are used to develop a reliable unicast routing protocol for MANETs. As the first step, an efficient cross layer link reliability metric is proposed for reliable link selection.Reliable routing protocols for MANETs use many link reliability metrics for finding reliable links; four of the most commonly used are: Link Expiration Time, Probabilistic Link Reliable Time, Link Packet Error Rate and Link Received Signal Strength. The cross layer metric combines the aforementioned metrics by means of a weight function. The value of the weighting factors of this function are determined by the Response Surface Methodology. Next a reliable position based CLUSTERING routing protocol is designed. In this protocol the mobile nodes form disjoint sets of clusters, and for increasing the stability of these clusters, the aforementioned cross layer link reliability metric is used for cluster formation. A route is constructed and represented by a sequence of clusters and more reliable links are selected for data transfer inside and between the clusters. Because of the multiple links which usually exist between the clusters, multipath route scheme is used in this routing protocol in addition to the reliable link selection. Simulation results show that by using this protocol the lowest number of route reconstructions is achieved in comparison with the other related protocols.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 220

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button