Let (M,g) be a compact immersed hypersurface of (Rn+1,<,>), l1 the first nonzero eigenvalue, a the mean curvature, P the support function, A the shape operator, vol(M) the volume of M, and S the scalar curvature of M. In this paper, we established some eigenvalue inequalities and proved the above.1/n òM \\A\\2 P2DV ³ </span></p>M a2 P2 dV. 2 òM a2 P2 dV ³ 1/n (n-1) òM sp2 dV.If the scalar curvature S and the first nonzero eigenvalue l1 staisfy S= l1 (N-1), than òM [a2 - l1/n] p2 dv³ 0, 4) Suppose that the Ricci curvature of M is bounded below by a positive constant k. ThusòM a2 P2 dV ³ k/n(n-1) òM \\ gradf\\ dv+vol(M). 5) Suppose that the Ricci curvature is bounded and the scalar curvature satisfy S= l1(n− 1) and L=k- 2S>0 is a constant. Thusvol (M) ³ kl1 /L òM\\ Y \\ a pdv – 2S/L òM a2 P2 Dv.