خشکسالی آب زیرزمینی یکی از انواع خشکسالی است که در اثر تغذیه ناکافی مخازن سفره های آب زیرزمینی بوجود آمده و شاخص منبع آب زیرزمینی (GRI) به عنوان روشی برای بیان وضعیت سطح آب زیرزمینی محسوب می شود. تاکنون روش ها و مدل های مختلفی برای پیش بینی و مدل سازی این پدیده ارائه شده است اما از آنجا که انتخاب یک مدل مناسب کار مشکلی می باشد می توان به جای استفاده از یک مدل؛ ترکیبی از مدل های منفرد قابل قبول را مورد استفاده قرار داد تا بتوان به پیش بینی مناسبت تر و قابل اعتماد تری دست یافت. در این تحقیق پس از محاسبه مقادیر GRI طی دوره آماری(1363-1390) در جنوب استان قزوین و بررسی ارتباط آن با پارامترهای هواشناسی (بارندگی، دبی، تبخیروتعرق پتانسیل، دما (میانگین، ماکزیمم، مینیمم)) و سیگنالهای اقلیمی ( MEI، SOI، AMM، AMO و PDO)، با استفاده از آزمون گاما در سه ساختار ترکیب ورودی، اقدام به مدل سازی با شبکه عصبی مصنوعی گردید. نتایج نشان داد که سیگنال اقلیمی SOI و پارامترهای دمایی دارای بیشترین همبستگی معنی دار با مقادیر GRI می باشند. استفاده از پارامترهای هواشناسی نیز سبب بهبود عملکرد شبکه عصبی گردید. همچنین مدل سریزمانیARIMA(1, 1, 3)(2, 0, 1) با توجه به معیارهای ارزیابی آکاییک و شوارتز به عنوان مدل منتخب تعیین گردید. در نهایت نیز مدل سازی با مدل ترکیبی ANN-ARIMA انجام گرفت که عملکرد بهتری نسبت به دو مدل شبکه عصبی و سری زمانی نشان داد. (R2=0. 94, RMSE= 0. 05)