در سال های اخیر تشخیص اشیاء کوچک با استفاده از تکنیک های یادگیری عمیق در بسیاری از کاربردهای عملی مورد توجه خاص قرار گرفته است و امری چالش برانگیز می باشد، زیرا اشیاء کوچک در تصاویر وضوح کمی دارند و حاوی اطلاعات دقیق نیستند. در این مقاله یک آشکارساز دومرحله ای جدید مبتنی بر تشخیص اشیاء با هرم ویژگی بازگشتی و نرخ Atrousبا استفاده از آشکارساز (DetectoRS) جهت تشخیص هوشمند عیوب کوچک و مهم خطوط انتقال برق معرفی شده و معماری DetectoRS در این راستا به طور کامل اصلاح شده است. در روش پیشنهادی DRSPTL از Cascade R-CNN با ResNext-101جهت افزایش دقت در تشخیص عیوب کوچک استفاده شده است. در این مقاله تصاویر RGB با وضوح بالا توسط پهپاد از خطوط انتقال شرکت های برق منطقه ای تهران، کرمان، شیراز، اصفهان و اهواز تهیه شده، و مجموعه داده های آموزش و تست مربوط به عیوب توسط گروهی از متخصصین آماده شده است. برای ساخت داده های آموزش، تقریباً 80% از کل مجموعه تصاویر حاوی عیوب کوچک، انتخاب و برچسب گذاری شدند. DRSPTL بالاترین دقت را در مقایسه با دو روش معتبر در زمینه تشخیص اشیاء RetinaNet و RepPoints دارا می باشد. قابل ذکر است که با توجه به نتایج بدست آمده می توان با شناسایی اتوماتیک عیوب و جلوگیری از وقوع بسیاری از قطعی های برق، باعث کاهش چشمگیر زمان و هزینه شرکت های برق منطقه ای شد.