In the present study, a space thruster system type monopropellant has been modeled and designed so as to create a Five-Newton thrust force(propulsion) and specific impulse of 220 seconds, with the usage of adjusting motion or changing the position of the satellite. This model consists of two major parts including a catalytic reactor with hydrazine feed, 15% nickel catalyst based on gamma alumina and a convergent-divergent nozzle. The catalytic reactor model is a fixed bed, one-dimensional, steady state and adiabatic with heterogeneous decomposition reactions. The process functions by performing two heterogeneous decomposition reactions of hydrazine and ammonia and converting to light gases (hydrogen and nitrogen) with high temperatures. Subsequently, the thrust force will be obtained by the evolution of the gas from bed and nozzle. The catalyst is made up of wet impregnation method and the required characteristics are specified by quantitative, qualitative and thermal analysis tests. The outcomes of modelling include mass, energy, kinetic, physical and chemical variables in the space propulsion. It is also considered as one of the important advantages of designing the measurement and predicting the variables. So as to determine the performance and validity of the model, indicators such as the thrust force, specific impulse, bed pressure drop and the minimum of ammonia decomposition has been scrutinized with the same kinetic and operating conditions in the designing and experimental model (in atmospheric conditions and static). The obtained results are consistent and have been verified.