اینترنت اشیاء شبکه ای از دستگاه ها و تجهیزات فیزیکی دربردارنده حسگرها، نرم افزارها و سایر فناوری ها به منظور تبادل داده با سایر دستگاه ها و سامانه ها از طریق اینترنت است. گسترش اینترنت اشیاء در حوزه های بهداشت و درمان هوشمند، کشاورزی هوشمند، شهر هوشمند، خانه هوشمند و سایر حوزه ها انقلابی در زندگی بشر ایجاد کرده است. با توجه به اهمیت اینترنت اشیاء شناسایی ناهنجاری و ترافیک مخرب در آن برای حفظ حریم خصوصی، پایداری شبکه و مسدودسازی رفتارهای ناخواسته ضروری است. به دلیل خاصیت محدودیت منابع در دستگاه های اینترنت اشیاء، شیوه های سنتی نمی توانند مستقیماً برای ایمن سازی دستگاه ها و شبکه اینترنت اشیاء مورداستفاده قرار گیرند. برای رفع این مشکل یک روش شناسایی مبتنی بر شبکه های عصبی مصنوعی و یادگیری عمیق برای شناسایی ناهنجاری و ترافیک مخربی که هیچ گونه اطلاعات از پیش تعیین شده ای درباره آن ها وجود ندارد، توسعه داده شده است. مجموعه داده های مورداستفاده در این روش ترکیبی از ترافیک مخرب و سالم جمع آوری شده از منابع مرتبط و استخراج ویژگی به صورت دستی است. شبکه عصبی مصنوعی عمیق بر روی مجموعه داده و پیش پردازش شده اعمال گردید و نتایج حاصل با برخی از الگوریتم های یادگیری ماشین مرسوم مورد بررسی قرار گرفت. نتایج به دست آمده نشان می دهد که مدل طراحی شده با استفاده از شبکه عصبی و یادگیری عمیق قادر به شناسایی ناهنجاری و ترافیک بدخواه در شبکه اینترنت اشیاء با نرخ صحت بیش از 98. 9% و نرخ دقت 99. 3% است. علاوه بر این، سرعت شناسایی در مقایسه با الگوریتم های یادگیری ماشین 1. 7 برابر سریع تر است.