هدف اصلی مقاله حاضر، استفاده از مدل های احتمال اتورگرسیو میانگین متحرک(ARMA) به منظور مدل سازی سری زمانی موقعیت روزانه ایستگاه دائمی GPS می باشد. موقعیت های روزانه ایستگاه دائمی LLAS در منطقه کالیفرنیای جنوبی از شبکه SCIGN با پوشش زمانی هفت سال از ژانویه 2000 تا دسامبر 2006 جهت ایجاد سری زمانی موقعیت و آنالیز آن انتخاب گردیده است. بر اساس سری زمانی موقعیت روزانه و استفاده از روش کمترین مربعات وزن دار، پارامترهای ژئودتیکی مانند: ترند خطی، نوسانات سالیانه و نیم سالیانه و نیز آفست ها به طور همزمان برای ایستگاه دائمی LLAS برآورد شده اند. در این مطالعه، توابع خود همبستگی(ACF) و خودهمبستگی جزئی (PACF)، به عنوان ابزارهای مطالعاتی برای شناسایی رفتار سری زمانی موقعیت روزانه ایستگاه دائمی GPS مورد استفاده قرار می گیرند و امکان بررسی وابستگی داده های روزانه سری زمانی موقعیت را فراهم می نمایند. با توجه به اینکه ممکن است چند مدل احتمالاتی متفاوت برای یک سری زمانی موقعیت روزانه مناسب باشند، لذا محک اطلاعات آکاییک در مرحله شناسایی و انتخاب مدل مفید، مورد استفاده قرار گرفته است. در این مطالعه، نتایج عددی نشان می دهند که بهترین مدل احتمالاتی اتورگرسیو میانگین متحرک برای ایستگاه دائمی LLAS از مرتبه (1,1) برای جهت N می باشد. همچنین مدل احتمالاتی ARMA (2,1) برای جهت E مناسب ترین مدل می باشد در حالی که برای جهت U مدل احتمالاتی ARMA (1,2) بهترین مدل است. بعد از برآورد یک مدل احتمالاتی مناسب برای سری زمانی موقعیت روزانه ایستگاه دائمی GPS، می توان آن سری زمانی موقعیت را همراه با ترند و مولفه های فصلی پیش بینی کرد.