روش تحلیل معکوس جریان گذرا (ITA)، یکی از روش های موفق در زمینه شناسایی نشت در شبکه های آبرسانی است. با این وجود دستیابی به پارامترهای مجهول نشت مانند تعداد، مکان و مساحت نشت ها در این روش به دلیل استفاده از الگوریتم های فراکاوشی مانند الگوریتم ژنتیک (GA) نیازمند صرف هزینه و زمان محاسباتی زیادی است. هدف از این پژوهش ارایه راهکاری است که با حفظ ساختار محاسبات ITA، دقت و سرعت دسترسی به نتایج نیز افزایش یابد. در این پژوهش راهکار استفاده از مدل های جایگزین در فرایند بهینه سازی روش ITA مطرح شد. این مدل ها با تقلید از رفتار تابع هدف اصلی، تلاش می کنند با هزینه محاسباتی اندک، تا حد امکان بیشترین شباهت رفتاری را نسبت آن داشته باشند. در همین راستا الگوریتم بهینه سازی جدیدی بر پایه مدل جایگزین کریجینگ تحت عنوان الگوریتم GA-Kriging معرفی شد. در این الگوریتم با استفاده از ویژگی ساختاری مدل جایگزین کریجینگ و ارایه شاخصی به نام EI اصلاحاتی در انتخاب فرزندان الگوریتم GA انجام شد. به منظور ارزیابی الگوریتم GA-Kriging و مقایسه عملکرد آن با الگوریتم GA، از یک شبکه آبرسانی مرجع با هدف یافتن نشت استفاده شد. نتایج نشان داد که الگوریتم GA-Kriging با 52 درصد دقت بیشتر نتایج به دست آمده و صرفه جویی زمان محاسباتی به اندازه 75 درصد، نسبت به الگوریتم GA کارایی محاسباتی بیشتری دارد. این پژوهش نشان داد که استفاده مناسب از مدل های جایگزین در فرایند بهینه سازی می تواند سبب هوشمندتر شدن محاسبات، کاهش محاسبات تکراری و در نهایت، افزایش کارایی محاسباتی شود.