مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

44
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

18
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Photocatalytic Degradation of Amoxicillin and Levofloxacin from Aqueous Solutions Using Ag/ZnO

Pages

  331-344

Keywords

A-type ultraviolet (UV-A) radiationQ4

Abstract

 Water pollution caused by Antibiotics is a serious problem worldwide and particularly in Iran. Therefore, it is necessary to employ an effective method to eliminate Antibiotic pollutions. In this research, the degradation of amoxicillin and levofloxacin Antibiotics in aqueous solutions was studied using Ag/ZnO photocatalysis under the A-type ultraviolet irradiation (UV-A 365 nm). Having conducted the experiments, the Ag/ZnO composite was first synthesized by dispersing zinc oxide in silver nitrate. Afterward, the structure and properties of Ag/ZnO nanoparticles were characterized by XRD, FESEM, and EDX techniques. In the meant time, the concentration of Antibiotics and total organic carbon (TOC) were determined by UV-VIS spectrophotometer and TOC analyzers, respectively. The process efficiency has also been investigated under the influence of the following treatments: the effects of solution pH (3-11), initial concentration of amoxicillin and levofloxacin (5-30 mg/l), catalyst dosage (0.075-0.3 g/l), and reaction time (15-120 min). Based on the results, the highest efficiency in amoxicillin removal was determined (93.7%) in optimal conditions of Ag/ZnO at 0.15 g/l, pH 5, amoxicillin concentration 5 mg/l, and 120 min contact time. while the optimum condition for levofloxacin removal was achieved at 0.15 g/l catalyst dosage, pH 9.0, 120 min reaction time, and levofloxacin concentration of 5 mg/l. Under these conditions, the levofloxacin and TOC removal efficiency was 88.4% and 84.56%, respectively. The results showed that Ag/ZnO nanoparticles in the presence of the UV-A can efficiently remove amoxicillin and levofloxacin from aqueous solutions.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button