مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

140
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

38
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از یادگیری عمیق و الگوریتم بهینه سازی میگوی آشوبی

صفحات

 صفحه شروع 127 | صفحه پایان 138

چکیده

 اینترنت اشیاء, یک فناوری جدید است که این فناوری از طریق اینترنت با اشیاء پیرامون خود ارتباط برقرار می کند و باهدف سنجش و کنترل از راه دور استفاده می گردد. در زمینه امنیت شبکه اینترنت اشیاء (IoT), شناسایی دقیق انواع حملات به این شبکه ها که توسط میزبان های زامبی تحت کنترل مهاجم راه اندازی می شوند, اهمیت زیادی دارد. برای کاهش این تهدیدات, به روش های جدیدی نیاز است تا حملاتی که دستگاه های IoT را به خطر انداخته است, در کم ترین زمان ممکن شناسایی و از زیان های ناشی از حملات جلوگیری کنند. در این مقاله, یک شبکه عصبی جدید جهت بهبود تشخیص نفوذ به شبکه اینترنت اشیاء بر اساس شبکه عصبی کانولوشنال ALEXNET و الگوریتم بهینه سازی میگوی آشوبی به نام (MONANET) پیشنهاد شده است. در شبکه ی MONANET به منظور بهبود دقت در تشخیص نفوذ به شبکه ی IOT و عدم نیاز به تنظیم دستی پارامترها, فراپارامترهای شبکه عصبی با استفاده از الگوریتم میگوی آشوبی به صورت پویا انتخاب می شوند. مقدار تابع تلفات مجموعه اعتبارسنجی که از اولین آموزش مدل شبکه عصبی با استفاده از مجموعه داده Danmini doorbell به دست می آید, به عنوان مقدار تناسب CKH در نظر گرفته می شود. عملکرد جامع شبکه ی پیشنهادی و الگوریتم های GRU, ANN, SVM,LSTM ,FNN ,R-CNN وAPSO-CNN در پنج شاخص ارزیابی و در 12 اجرای مستقل مقایسه شده اند. نتایج به دست آمده نشان دهنده بهبود تشخیص نفوذ به شبکه اینترنت اشیاء است. الگوریتم پیشنهادی توانسته است بادقت 89.99 % حملات به شبکه اینترنت اشیاء را تشخیص دهد. نتایج تجربی برتری روش پیشنهادی را نسبت به سایر روش های مرز دانش از نظر بهبود دقت طبقه بندی نشان می دهد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button