مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

24
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

14
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Evaluating the Regulation of Diamine Cadaverine Content as a Cold Stress Tolerance Index in Chickpea

Pages

  149-161

Keywords

Diamine oxidase (DAO)Q4
Relative expression of Diamine Oxidase (CaDAO) geneQ4

Abstract

 Metabolic adaptation to cold stress plays an important role in the growth, survival, and yield of crops. Diamine Cadaverine (Cad) as an osmolyte may take part in counteracting the oxidative stress induced by cold stress in chickpea. In this experiment, content of hydrogen peroxide (H2O2), Cad, activity of diamine oxidase (DAO), and its relative gene expression (DAO) in cold-tolerant (Sel96th11439) and cold-sensitive (ILC533) chickpea (Cicer arietinum L.) genotypes under cold stress (4°C) as a factorial experiment in a completely randomized design (CRD) were studied. In tolerant genotype H2O2 content after a significant increase on the first day of cold stress decreased significantly on the sixth day of cold stress compared to control condition (up to 4.7%), while, its accumulation was observed in sensitive genotype (up to 50%). These results indicated a relative acclimation to cold stress in tolerant genotype. The Cad metabolite content (18 nmol/g FW) was observed under cold stress in tolerant genotype on the sixth day of stress. Under cold stress, in tolerant genotype increasing Cad content was accompanied with an increase in DAO activity and relative expression of DAO gene as biosynthetic pathways of this metabolite (up to 3.5- and 3-fold, respectively). The maximum activity of this route was observed in tolerant genotype on the sixth day of cold stress. In the late responses under cold stress, the accumulation of Cad in tolerant genotype led to reduced cell damage (H2O2 results) and improved cold tolerance. These indices were useful in assessment of chickpea genotypes under cold stress and breeding programs.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button