مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

1,688
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

889
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

تشخیص و طبقه بندی خودکار خرابی های روسازی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل

صفحات

 صفحه شروع 121 | صفحه پایان 142

چکیده

 ارزیابی عملکرد روسازی یکی از مهم ترین مراحل تعیین استراتژی بهینه, در عملیات مدیریت روسازی محسوب می شود. در دو دهه اخیر تحقیقات گسترده ای پیرامون توسعه روش های خودکار, جهت ارزیابی خرابی های روسازی انجام گرفته است. اغلب این روش ها بر پایه بینایی ماشین و تکنیک های پردازش تصویر هستند. در سال های اخیر روش های آنالیز چند دقته همچون تبدیل موجک, ابزار مناسبی جهت تحلیل و شناسائی هوشمند خرابی ها با سرعت و دقتی قابل قبول فراهم آورده است. در این مطالعه, روشی بر مبنای تبدیل موجک به کارگیری شده که قادر به آنالیز صفحه ای بافت روسازی با در نظر گرفتن اجزای افقی, قائم و قطری بافت روسازی است. در این پژوهش پس از اعمال تبدیل موجک گسسته و جدا سازی باند های فرکانسی تصویر توسط چهار خانواده مختلف از موجک ها, ویژگی های بافتی زیرباندها بر مبنای ماتریس هم رخداد سطوح خاکستری استخراج شده و با نتایج حاصل از آنالیز بافت تصویر در حوزه مکان مقایسه گردید. در انتها روش کمینه فاصله ماهالانوبیس به منظور تفکیک و طبقه بندی تصاویر خرابی در 7 کلاس شامل ترک پوست سوسماری, آسفالت سالم (بدون خرابی), ترک طولی, ترک عرضی, قیرزدگی, وصله و عریان شدگی به کارگیری گردید. نتایج اعتبارسنجی و ارزیابی عملکرد کلاس بندی حاکی از آن است که طبقه بندی تصاویر خرابی توسط آنالیز بافت تصویر در حوزه تبدیل نسبت به حوزه مکان نتایج دقیق تری در پی دارد. دقت عملکردی کلاس بندی تصاویر خرابی در حوزه تبدیل به طور میانگین برابر با 67 درصد بوده درحالی که دقت طبقه بندی داده های خرابی مبتنی بر استخراج ویژگی های بافتی در حوزه مکان برابر با 49.76 درصد است. در حوزه تبدیل, اگر چه فیلتر Daubechies 2 در شناسایی خرابی قیر زدگی حساسیت عملکرد بالاتری داشته, اما به طور میانگین فیلتر Haar نسبت به سایر موجک های استفاده شده, با دقت عملکردی 95.24 درصد نتایج برتری در شناسایی و کلاسه بندی خرابی های سطح روسازی آسفالتی حاصل نموده است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    شهابیان مقدم، رضا، صحاف، سیدعلی، محمدزاده مقدم، ابوالفضل، و پوررضا، حمیدرضا. (1396). تشخیص و طبقه بندی خودکار خرابی های روسازی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل. مهندسی حمل و نقل، 9(ویژه نامه )، 121-142. SID. https://sid.ir/paper/223993/fa

    Vancouver: کپی

    شهابیان مقدم رضا، صحاف سیدعلی، محمدزاده مقدم ابوالفضل، پوررضا حمیدرضا. تشخیص و طبقه بندی خودکار خرابی های روسازی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل. مهندسی حمل و نقل[Internet]. 1396؛9(ویژه نامه ):121-142. Available from: https://sid.ir/paper/223993/fa

    IEEE: کپی

    رضا شهابیان مقدم، سیدعلی صحاف، ابوالفضل محمدزاده مقدم، و حمیدرضا پوررضا، “تشخیص و طبقه بندی خودکار خرابی های روسازی بر پایه آنالیز بافت تصویر در حوزه مکان و تبدیل،” مهندسی حمل و نقل، vol. 9، no. ویژه نامه ، pp. 121–142، 1396، [Online]. Available: https://sid.ir/paper/223993/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button