مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

454
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Investigating the effect of Wetness index and spectral data on the estimation of soil particles percentage using neuro-fuzzy, artificial neural network and regression tree models

Pages

  104-123

Abstract

 Direct estimation of some soil characteristics is time consuming, costly and sometimes not possible. In recent years, indirect methods have been used to estimate these properties. In the present study, to predict the soil texture fractions, 115 profiles were identified based on the Hypercube technique, and the horizons were sampled and the percentage of sand, clay and silt of soil samples were measured. Environmental variables used in this study include the terrain attributes (derived from a digital elevation model), Landsat 8 image data (acquired in 2015), geomorphological map, and spectrometric data (laboratory data). Artificial Neural Network, regression tree and Neuro-Fuzzy models were used to make a correlation between soil data (clay, sand and silt) and environmental variables. The results of this study showed that the Neuro-Fuzzy model was more accurate in prediction of the three parameters of clay, sand and silt than Artificial Neural Network and Tree Regression. The RMSE value in the neuro fuzzy model was compared to regression tree model. The neuro fuzzy model results were, for clay surface 1. 43 %, for sand surface 1. 98% and for silt surface 2. 1% that reduced by 6. 71%, 8. 49% and 5. 42% for clay, sand and silt respectively, compared to regression tree model. The results also showed that the most important auxiliary variables are spectrometric data followed by MrVBF and Wetness Index.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Mehrabi Gohari, elham, MATINFAR, HAMID REZA, TAGHIZADEH MEHRJARDI, ROHOLLAH, & JAFARI, AZAM. (2020). Investigating the effect of Wetness index and spectral data on the estimation of soil particles percentage using neuro-fuzzy, artificial neural network and regression tree models. IRANIAN OF IRRIGATION & WATER ENGINEERING, 10(38 ), 104-123. SID. https://sid.ir/paper/247179/en

    Vancouver: Copy

    Mehrabi Gohari elham, MATINFAR HAMID REZA, TAGHIZADEH MEHRJARDI ROHOLLAH, JAFARI AZAM. Investigating the effect of Wetness index and spectral data on the estimation of soil particles percentage using neuro-fuzzy, artificial neural network and regression tree models. IRANIAN OF IRRIGATION & WATER ENGINEERING[Internet]. 2020;10(38 ):104-123. Available from: https://sid.ir/paper/247179/en

    IEEE: Copy

    elham Mehrabi Gohari, HAMID REZA MATINFAR, ROHOLLAH TAGHIZADEH MEHRJARDI, and AZAM JAFARI, “Investigating the effect of Wetness index and spectral data on the estimation of soil particles percentage using neuro-fuzzy, artificial neural network and regression tree models,” IRANIAN OF IRRIGATION & WATER ENGINEERING, vol. 10, no. 38 , pp. 104–123, 2020, [Online]. Available: https://sid.ir/paper/247179/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button