مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

825
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

524
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

استخراج دانش از سیستم استنتاج نوروفازی انطباق پذیر جهت شناسایی عوارض خاص شهری (مطالعه موردی: درختان و ساختمان ها)

صفحات

 صفحه شروع 79 | صفحه پایان 95

چکیده

 امروزه از سیستم های شناسایی قدرتمندی جهت کلاسه بندی داده ها استفاده می شود که روند یادگیری در آن ها به صورت جعبه سیاه بوده بگونه ای که نحوه کلاسه بندی و ارتباط بین توصیفگرها برای کاربر قابل فهم نمی باشند. درحالی که قابل فهم بودن دانش بدست آمده توسط سیستم های شناسایی می تواند کمک شایان توجهی به کاربر نماید تا کلاسه بندی را با دقت و صحت بیشتری انجام دهد. ازاین رو کشف دانش در قالب استخراج مجموعه ای از قوانین جهت کلاسه بندی دادها ازجمله موضوعات مهم و پرکاربرد در پردازش تصویر می باشد که سبب درک بهتر روش کلاسه بندی و بهبود آن در گام های بعدی می گردد. هدف این مقاله, پیشنهاد روندی جهت استخراج قوانین فازی به صورت شرطی از سیستم استنتاج نوروفازی انطباق پذیر برای کلاسه بندی داده های لیدار و تصاویر هوایی رقومی می باشد. تا بدین وسیله میزان اهمیت و ارتباط بین توصیفگرهایی که منجر به استخراج یک عارضه خاص می گردند در قالب یکسری قوانین فازی با زبان قابل فهم برای کاربر شناسایی گردند. به بیان دیگر مشخص شود که ارتباط کدامیک از توصیفگرها در شناسایی یک عارضه از بالاترین میزان اهمیت برخوردار است. در این راستا ابتدا تعدادی توصیفگر بالقوه اولیه تولید شده و سپس توصیفگرهای بهینه توسط الگوریتم ژنتیک انتخاب شدند. با وارد نمودن داده های آموزشی به الگوریتم جداسازی تورانه ای مقادیر اولیه برای مجموعه های فازی در مقدم قوانین تعیین گشت و طی فرآیند آموزش, کلاسه بندی کننده نهایی ایجاد و دو کلاس درختان و ساختمان ها شناسایی گشتند. سپس با پیشنهاد یک روش فازی- مبنا و با استفاده از توابع عضویت نهایی بدست آمده از سیستم استنتاج نوروفازی انطباق پذیر و داده های آموزشی اخذشده از لایه های توصیفگر, مجموعه قوانین فازی موثر از فرآیند شناسایی استخراج گشت. قوانین فازی استخراج شده از این روش از لحاظ منطقی و با در نظر گرفتن لایه های توصیفگر مورد بررسی قرار گرفتند که نتایج نشان از توانایی بالای روش پیشنهادی در استخراج قوانین از فرآیند شناسایی داشتند.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    پهلوانی، پرهام، و امینی امیرکلائی، حامد. (1394). استخراج دانش از سیستم استنتاج نوروفازی انطباق پذیر جهت شناسایی عوارض خاص شهری (مطالعه موردی: درختان و ساختمان ها). علوم و فنون نقشه برداری، 5(2)، 79-95. SID. https://sid.ir/paper/249314/fa

    Vancouver: کپی

    پهلوانی پرهام، امینی امیرکلائی حامد. استخراج دانش از سیستم استنتاج نوروفازی انطباق پذیر جهت شناسایی عوارض خاص شهری (مطالعه موردی: درختان و ساختمان ها). علوم و فنون نقشه برداری[Internet]. 1394؛5(2):79-95. Available from: https://sid.ir/paper/249314/fa

    IEEE: کپی

    پرهام پهلوانی، و حامد امینی امیرکلائی، “استخراج دانش از سیستم استنتاج نوروفازی انطباق پذیر جهت شناسایی عوارض خاص شهری (مطالعه موردی: درختان و ساختمان ها)،” علوم و فنون نقشه برداری، vol. 5، no. 2، pp. 79–95، 1394، [Online]. Available: https://sid.ir/paper/249314/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button