مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

568
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

523
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

تخمین مقادیر آنومال به کمک ترکیب مناسبی از روش جدایش فواصل ماهالانوبیس و سه روش پرکاربرد داده کاوی، مطالعه موردی: پرکام

صفحات

 صفحه شروع 45 | صفحه پایان 57

چکیده

 در مطالعه پیش رو به منظور کاهش خطا و ریسک در راستای صرف هزینه, زمان, انرژی و نیز دستیابی به پیشگوئی هایی به مراتب ارزنده تر, به بررسی ترکیب روش های داده کاوی و جدایش آنومالی پرداخته می شود. اهمیت تشخیص مقادیر آنومال از زمینه بر هیچ یک پوشیده نیست, به این منظور روش های متعددی ابداع گشته است که از آن جمله می توان به روش جدایش فواصل ماهالانوبیس اشاره کرد که روشی موثر و چند متغیره در جدایش مقادیر آنومال از زمینه محسوب می شود. از طرفی, پیش بینی ابزاری قدرتمند در فرآیند برنامه ریزی در هر فعالیتی هست, پس به کارگیری روش های داده کاوی در جهت یافتن الگو و روابط نهفته در دل داده ها, نیاز ما را در این زمینه مرتفع می سازد. لذا در مطالعه حاضر, به بررسی عملکرد ترکیب روش جدایش فوق با سه روش داده کاوی K -نزدیک ترین همسایه, طبقه بند ساده بیز و درخت تصمیم گیری پرداخته می شود. به این ترتیب که پس از جدایش مقادیر آنومال مس و مولیبدن در مورد 377 نمونه حاصله از عملیات نمونه برداری سطحی در محدوده پرکام به کمک روش فواصل ماهالانوبیس, به منظور پیش بینی این مقادیر برای هر نمونه تصادفی, سه روش داده کاوی مذکور, مورد استفاده قرار می گیرند. در نهایت نیز جهت بررسی شبکه های طراحی شده, نمونه های آموزشی به عنوان داده های تست در اختیار شبکه های مذکور قرار گرفته اند. نتایج حاصله نشان می دهند که روش درخت تصمیم گیری به مراتب قوی تر ظاهر شده, زیرا در شبکه طراحی شده توسط این روش, تنها دو نمونه از بین 377 نمونه, اشتباها شناسایی شده اند که نشان دهنده دقت بالای شبکه طراحی شده است. یعنی مقدار خطای Resubstitution گزارش شده برای این شبکه برابر با 0.0053 هست. لازم به ذکر است که تعداد نمونه های به اشتباه پیش بینی شده برای دو روش KNN و بیز به ترتیب برابر با 9 و 23 و به تبع, مقدار خطای محاسبه شده برای آنها نیز به ترتیب برابر با 0.0239 و 0.061 گزارش شده اند. به این ترتیب با توجه به میزان خطای به مراتب قابل قبول تر برای شبکه طراحی شده توسط ترکیب روش درخت تصمیم گیری و فواصل ماهالانوبیس, ترکیب مذکور به عنوان روشی قابل اطمینان و سودمند جهت رسیدن به صحیح ترین پیشگوئی ها به تصمیم گیران این صنعت معرفی شده است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    قنادپور، سیدسعید، هزارخانی، اردشیر، و رودپیما، ترانه. (1396). تخمین مقادیر آنومال به کمک ترکیب مناسبی از روش جدایش فواصل ماهالانوبیس و سه روش پرکاربرد داده کاوی, مطالعه موردی: پرکام. روش های تحلیلی و عددی در مهندسی معدن، 7(13 )، 45-57. SID. https://sid.ir/paper/266036/fa

    Vancouver: کپی

    قنادپور سیدسعید، هزارخانی اردشیر، رودپیما ترانه. تخمین مقادیر آنومال به کمک ترکیب مناسبی از روش جدایش فواصل ماهالانوبیس و سه روش پرکاربرد داده کاوی, مطالعه موردی: پرکام. روش های تحلیلی و عددی در مهندسی معدن[Internet]. 1396؛7(13 ):45-57. Available from: https://sid.ir/paper/266036/fa

    IEEE: کپی

    سیدسعید قنادپور، اردشیر هزارخانی، و ترانه رودپیما، “تخمین مقادیر آنومال به کمک ترکیب مناسبی از روش جدایش فواصل ماهالانوبیس و سه روش پرکاربرد داده کاوی, مطالعه موردی: پرکام،” روش های تحلیلی و عددی در مهندسی معدن، vol. 7، no. 13 ، pp. 45–57، 1396، [Online]. Available: https://sid.ir/paper/266036/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button