مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

704
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

1

Information Journal Paper

Title

GILL ULTRASTRUCTURAL ALTERATIONS IN RESPONSE TO VARIOUS ENVIRONMENTAL SALINITIES IN YELLOWFIN SEABREAM, (ACANTHOPAGRUS LATUS)

Pages

  165-174

Abstract

 BACKGROUNGD: Alterations to mitochondria-rich cells (MRC) in the fish gill epithelium have been previously reported. OBJECTIVES: To specify the variation pattern of apical openings in mitochondria- rich cells in short and long terms exposure to different salinities. METHODS: YELLOWFIN SEABREAM, (Acanthopagrus latus) was subjected to different salinities (freshwater, 5, 20 and 60 ppt) besides the normal environmental salinity in the Musa creek (42 ppt) over 21days, with three replicates for each condition. Samples were collected at the 1st, 7th and 21st days of experiment. Dissected gill arches were fixed in 2% glutaraldehyde+2% paraformaldehyde (pH=7.4) at 4oC and studied using scanning electron microscopy. RESULTS: Three subtypes of mitochondria-rich cells (shallow basin, deep hole and wavy convex) were detected in the gill epithelium based on different environmental salinities. While most of mitochondria-rich cells were present in seawater group, all of them were detected as the shallow basin subtype in 60 ppt group. Meanwhile, decrease in salinity to 20ppt, made morphological changes in the apical membrane of the mitochondria-rich cells on day 7, so that most of these cells have been detected as wavy convex or shallow basin subtypes. On the other hand, on day 21 they showed a pattern similar to the basal status. Furthermore, when they were transferred to hypoosmotic medium (5 ppt and FW), rapid changes were exhibited in the apical membrane of mitochondria-rich cell which were stabilized after 21 days so that all subtypes of mitochondria-rich cells were observed in photomicrographs of gill filaments. CONCLUSIONS: Shallow basin mitochondria-rich cells as typical cells in seawater fish species, would be able to do OSMOREGULATION in hyperosmotic environment in YELLOWFIN SEABREAM, yet in hypoosmotic conditions all sub- types of the mitochondria-rich cells would be required.

Cites

References

  • No record.
  • Cite

    APA: Copy

    MOVAHEDINIA, A.A., SAVARI, A., & SALATI, A.P.. (2012). GILL ULTRASTRUCTURAL ALTERATIONS IN RESPONSE TO VARIOUS ENVIRONMENTAL SALINITIES IN YELLOWFIN SEABREAM, (ACANTHOPAGRUS LATUS). JOURNAL OF VETERINARY RESEARCH, 67(2), 165-174. SID. https://sid.ir/paper/34606/en

    Vancouver: Copy

    MOVAHEDINIA A.A., SAVARI A., SALATI A.P.. GILL ULTRASTRUCTURAL ALTERATIONS IN RESPONSE TO VARIOUS ENVIRONMENTAL SALINITIES IN YELLOWFIN SEABREAM, (ACANTHOPAGRUS LATUS). JOURNAL OF VETERINARY RESEARCH[Internet]. 2012;67(2):165-174. Available from: https://sid.ir/paper/34606/en

    IEEE: Copy

    A.A. MOVAHEDINIA, A. SAVARI, and A.P. SALATI, “GILL ULTRASTRUCTURAL ALTERATIONS IN RESPONSE TO VARIOUS ENVIRONMENTAL SALINITIES IN YELLOWFIN SEABREAM, (ACANTHOPAGRUS LATUS),” JOURNAL OF VETERINARY RESEARCH, vol. 67, no. 2, pp. 165–174, 2012, [Online]. Available: https://sid.ir/paper/34606/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops

  • No record.





  • Move to top