مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

550
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

678
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوک های LSTM

صفحات

 صفحه شروع 191 | صفحه پایان 211

چکیده

کشف ناهنجاری به معنای یافتن نمونه هایی است که با اکثریت هنجار و عادی داده ها تفاوت دارند. یکی از اساسی ترین چالش هایی که در سر راه انجام این کار مهم وجود دارد این است که نمونه های برچسب خورده, به ویژه برای کلاس ناهنجار کمیاب و گاه نایاب هستند. ما در این مقاله روشی را پیشنهاد می کنیم که برای کشف ناهنجاری تنها از داده های هنجار استفاده می کند. این روش بر مبنای شبکه های عصبی تاسیس شده که کد کننده خودکار نام دارند و در مطالعات یادگیری عمیق موردتوجه هستند. یک کد کننده خودکار ورودی خود را در خروجی بازتولید کرده و خطای بازسازی را به عنوان رتبه ناهنجاری مورداستفاده قرار می دهد. ما برای ساخت کد کننده, به جای نورون های معمولی از بلوک های LSTM استفاده کرده ایم. این بلوک ها درواقع نوعی از شبکه های عصبی بازگشتی هستند که در کشف و استخراج وابستگی های زمانی و مجاورتی مهارت دارند. نتیجه به کارگیری کد کننده خودکار مبتنی بر بلوک های LSTM برای کشف ناهنجاری نقطه ای در ده نمونه از دادگان های رایج نشان می دهد که این روش در استخراج مدل درونی داده های هنجار و تشخیص داده های ناساز موفق بوده است. معیار AUC مدل مذکور, تقریبا در تمامی موارد از AUC یک کد کننده خودکار معمولی و روش مشهور ماشین بردار پشتیبان تک کلاسه یا OC-SVM بهتر است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    معلم، محمود، و پویان، علی اکبر. (1398). کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوک های LSTM. مدل سازی در مهندسی، 17(56 )، 191-211. SID. https://sid.ir/paper/358500/fa

    Vancouver: کپی

    معلم محمود، پویان علی اکبر. کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوک های LSTM. مدل سازی در مهندسی[Internet]. 1398؛17(56 ):191-211. Available from: https://sid.ir/paper/358500/fa

    IEEE: کپی

    محمود معلم، و علی اکبر پویان، “کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوک های LSTM،” مدل سازی در مهندسی، vol. 17، no. 56 ، pp. 191–211، 1398، [Online]. Available: https://sid.ir/paper/358500/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button