In recent years, because of the increased social concerns about the environment, the reverse logistics concept has been linked to waste management. In fact, municipal solid waste management can be considered as one of the reverse logistics issues in managing the supply chain. In this research, a model for the design of a supply chain network of reverse logistic for municipal soild waste is presented. Using the two objective of profit and biological functions, we have tried to consider two dimensions of sustainable development. The economic objective function examines the maximization of profit and the environmental objective function examines the minimization of co2 due to waste transportation and landfill storage. The proposed model is able to determine the optimal number and the location of facilities and materials flow between nodes at different levels of the network in order to achieve simultaneous economic and environmental goals. The ɛ-constraint Methods has been used to solve a multi-objective model. Also, in order to reduce the problem space and monitor the potential locations of the supply chain network facility, an effective ranking method such as data envelopment analysis is presented. The present study has been used as an applied research data from the waste management organization of Shiraz Municipality and the proposed model has been solved in GAMS software.