مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

365
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Numerical Simulation of Three-Dimensional Flow in Baffle Modules

Pages

  101-116

Abstract

 Intake Modules are structures that deliver relatively constant discharge irrespective of water surface fluctuations. One of these modules is baffle sluice modules for which various theoretical methods have been proposed so far for determining their dimensions. Determining the best theoretical approach requires experimental studies. In this regard experimentations have been carried out only for low capacities. Therefore, numerical methods can be used to identify design criteria of baffle modules in higher capacities. But because of the scale effect on Experimental Models such as weir, the use of these models in higher capacities requires time and cost. Also, considering the type of design of the baffle modules, determination of the sensitivity of Baffle Height in determining the share of flow over the baffles and the rate of discharge of each duct is very important, which is not feasible in Experimental Models. In this research aims to evaluate the application of three-dimensional numerical models in simulation of flow in baffle modules for reproduction of observational data, determination of the share of flow over the baffles, the rate of discharge of each parallel duct and the use of stage-discharge equations. The result of Flow-3D software indicated that very good concurrence exists between the numerical model output and the observed data for low discharge and this software is applicable to determination of design criteria for the modules for high capacities, determination of the share of flow over the baffles, the rate of discharge of each parallel duct and the use of stage-discharge equations. This indicated the capability of such mean to substitute experimental test or to decrease their use for special cases with an average error of about 1. 7% for 14 l/s, 3. 97% for 10 l/s, 5. 22% for 7 l/s and 7. 94% for 4 l/s.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Momeni Heravi, A., KOUCHAKZADEH, S., & BIJANKHAN, M.. (2019). Numerical Simulation of Three-Dimensional Flow in Baffle Modules. IRRIGATION AND DRAINAGE STRUCTURES ENGINEERING RESEARCH , 20(75 ), 101-116. SID. https://sid.ir/paper/396693/en

    Vancouver: Copy

    Momeni Heravi A., KOUCHAKZADEH S., BIJANKHAN M.. Numerical Simulation of Three-Dimensional Flow in Baffle Modules. IRRIGATION AND DRAINAGE STRUCTURES ENGINEERING RESEARCH [Internet]. 2019;20(75 ):101-116. Available from: https://sid.ir/paper/396693/en

    IEEE: Copy

    A. Momeni Heravi, S. KOUCHAKZADEH, and M. BIJANKHAN, “Numerical Simulation of Three-Dimensional Flow in Baffle Modules,” IRRIGATION AND DRAINAGE STRUCTURES ENGINEERING RESEARCH , vol. 20, no. 75 , pp. 101–116, 2019, [Online]. Available: https://sid.ir/paper/396693/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button