مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

262
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Evaluation of GMDH artificial neural network model to predict the spatial distribution of Coccinella septempunctata (Col.: Coccinellidae) in the alfalfa farm of Bajgah, Shiraz

Pages

  275-287

Abstract

 This study aimed to predict population of Coccinella septempunctata in the field using artificial neural network. The data was collected from a four-hectare field in years of 2013-2014 in the area of Badjga Shiraz. In this model, the input variables were, longitude and latitude and population changes of Coccinella septempunctata was used as the outcome variable. The neural network type used, was Group Method of Data Handling (GMDH) that optimized by genetic algotithm. To evaluate the ability of GMDH neural networks to predict the spatial distribution of the species, statistical comparison of the parameters such as mean, variance, statistical distribution and coefficient determination of linear regression between predicted values and actual values was used. Results showed that in training and test phases of GMDH, there was no significant effect between variance, mean and statistical distribution of actual and predicted values, and the coefficient of determination of 0. 98 indicates the high accuracy of this neural network in predicting the density of this species. The drawn maps showed that the distribution of this natural enemy is patchy.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Mohamadi, Ronak, Shabaninejad, Alireza, ALICHI, MAHMOOD, & Shabani Nejad, Mohammad Reza. (2018). Evaluation of GMDH artificial neural network model to predict the spatial distribution of Coccinella septempunctata (Col.: Coccinellidae) in the alfalfa farm of Bajgah, Shiraz. JOURNAL OF ENTOMOLOGICAL SOCIETY OF IRAN (JESI), 38(3 (75) ), 275-287. SID. https://sid.ir/paper/399973/en

    Vancouver: Copy

    Mohamadi Ronak, Shabaninejad Alireza, ALICHI MAHMOOD, Shabani Nejad Mohammad Reza. Evaluation of GMDH artificial neural network model to predict the spatial distribution of Coccinella septempunctata (Col.: Coccinellidae) in the alfalfa farm of Bajgah, Shiraz. JOURNAL OF ENTOMOLOGICAL SOCIETY OF IRAN (JESI)[Internet]. 2018;38(3 (75) ):275-287. Available from: https://sid.ir/paper/399973/en

    IEEE: Copy

    Ronak Mohamadi, Alireza Shabaninejad, MAHMOOD ALICHI, and Mohammad Reza Shabani Nejad, “Evaluation of GMDH artificial neural network model to predict the spatial distribution of Coccinella septempunctata (Col.: Coccinellidae) in the alfalfa farm of Bajgah, Shiraz,” JOURNAL OF ENTOMOLOGICAL SOCIETY OF IRAN (JESI), vol. 38, no. 3 (75) , pp. 275–287, 2018, [Online]. Available: https://sid.ir/paper/399973/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button