مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

1,765
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

مدل شبکه عصبی از عضله تحریک شده در شرایط غیر ایزومتریک

صفحات

 صفحه شروع 81 | صفحه پایان 92

چکیده

 مدل جدیدی از عضله تحریک شده در شرایط غیر ایزومتریک ارایه شده است. مدل های ارایه شده کنونی مبتنی بر ساختار مدل هیل هستند. در این ساختار, رفتار عضله به بخش های مستقل از یکدیگر تجزیه شده و فرض می شود که این بخش ها ارتباطی با یکدیگر ندارند, در صورت که این تجزیه و عدم وابستگی بخش ها به یکدیگر, واقعیت فیزیکی ندارد. به منظور رفع محدودیت های مدل های ساختار هیل, در این تحقیق از شبکه های عصبی دینامیک به عنوان ابزاری جهت مدل سازی عضله در شرایط غیر ایزومتریک استفاده شده است. برای این منظور, دو نوع شبکه عصبی به کار گرفته شد: شبکه پرسپترون با الگوریتم یادگیری پس انتشار خطا و شبکه عصبی مبتنی بر توابع پایه شعاعی الگوریتم یادگیری گرادیان تصادفی. نتایج این تحقیق نشان می دهد مدل های عصبی قادر به پیش بینی دقیق تری از میزان نیرو انقباض عضلانی در شرایط غیر ایزومتریک نسبت به مدل های پایه هیل هستند. از آنجایی که عضله دارای رفتار متغیر با زمان است دو ساختار متفاوت, شبکه عصبی متغیر با زمان و نامتغیر با زمان برای مدل سازی عضله در نظر گرفته شده است. نتایج نشان می دهد مدل های عصبی متغیر با زمان, با دقت 99.5% و مدل های نامتغیر با زمان, با دقت 95% قادر به پیش بینی نیروی انقباض عضله تحریک شده در شرایط غیر ایزومتریک هستند. علاوه بر این, نتایج این تحقیق نشان می دهد دقت پیش بینی شبکه عصبی به ساختار شبکه بستگی دارد. با وجود ساده بودن ساختار شبکه عصبی مبتنی بر توابع شعاعی نسبت به ساختار شبکه عصبی پس انتشار خطا, دقت پیش بینی با شبکه عصبی مبتنی بر توابع شعاعی با 1000 دوره یادگیری بیشتر از شبکه عصبی پس انتشار خطا با 5000 دوره یادگیری است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    عرفانیان امیدوار، عباس. (1384). مدل شبکه عصبی از عضله تحریک شده در شرایط غیر ایزومتریک. مهندسی پزشکی زیستی، 2(1)، 81-92. SID. https://sid.ir/paper/81685/fa

    Vancouver: کپی

    عرفانیان امیدوار عباس. مدل شبکه عصبی از عضله تحریک شده در شرایط غیر ایزومتریک. مهندسی پزشکی زیستی[Internet]. 1384؛2(1):81-92. Available from: https://sid.ir/paper/81685/fa

    IEEE: کپی

    عباس عرفانیان امیدوار، “مدل شبکه عصبی از عضله تحریک شده در شرایط غیر ایزومتریک،” مهندسی پزشکی زیستی، vol. 2، no. 1، pp. 81–92، 1384، [Online]. Available: https://sid.ir/paper/81685/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    مرکز اطلاعات علمی SID
    strs
    دانشگاه امام حسین
    بنیاد ملی بازیهای رایانه ای
    کلید پژوه
    ایران سرچ
    ایران سرچ
    فایل موجود نیست.
    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button