Search Result

44202

Results Found

Relevance

Filter

Newest

Filter

Most Viewed

Filter

Most Downloaded

Filter

Most Cited

Filter

Pages Count

4421

Go To Page

Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Author(s): 

Issue Info: 
  • Year: 

    1397
  • Volume: 

    10
  • Issue: 

    10
  • Pages: 

    134-146
Measures: 
  • Citations: 

    1
  • Views: 

    1393
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1393

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

  • Issue: 

  • Pages: 

    1-16
Measures: 
  • Citations: 

    0
  • Views: 

    1312
  • Downloads: 

    0
Abstract: 

پژوهش حاضر با هدف سنتز ادبیات مربوط به دانشگاه مهارت محور در راستای شناسایی مولفه های دانشگاه مهارت محور در نظام آموزش عالی کشور انجام شده است. این پژوهش از نظر هدف کاربردی و با روش کیفی فراترکیب انجام شده است. جامعه آماری، کلیه مطالعات انجام شده در بازه زمانی 1380 الی 1401 است. در این راستا 38پژوهش در زمینه موضوع موردنظر ارزیابی و درنهایت 22 پژوهش به صورت هدفمند انتخاب گردید و با تحلیل محتوا و ترکیب ادبیات مربوط، درمجموع 126 کد،12 مفهوم، 7 مقوله کلیدی طی فرایند جست وجو و ترکیب نظام مند متون شناسایی و مورد تحلیل قرار گرفت و اعتبار آن از طریق آزمون کاپای کوهن تأیید گردید. نتایج تحلیل نشان داد، که مهم ترین مولفه های کلیدی شناسایی شده شامل: دولت، ماموریت و رسالت های دانشگاه، پژوهش، آموزش، ارتباط با صنعت، فرهنگ و تعامل با محیط بین الملل است. این پژوهش ازآن جهت که درک عمیقی از ادبیات موجود در مورد موضوع پژوهش با شناسایی مولفه های دانشگاه مهارت محور ارائه می دهد، می تواند در سیاست گذاری های نظام آموزش عالی کشور در راستای توسعه مهارت محوری در نظام آموزش عالی کشور مورداستفاده قرار گیرد.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1312

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    3
  • Issue: 

    3
  • Pages: 

    1-11
Measures: 
  • Citations: 

    0
  • Views: 

    902
  • Downloads: 

    0
Abstract: 

Integral Equations such as one-step inversion based on the first derivative of the ellipsoidal Poisson’s integral, for transformation of gravity values on the Earth’s surface to the gravity potential on the reference ellipsoid are used for geoid determination. One of the main problems in numerical solution of integral equations is the resolution of input data. In this study, we have shown that the required resolution of the input gravity data on the Earth’s surface for correct one-step inversion depends on the height of the computational region, the fact that if overlooked can cause totally wrong results. For detect that the resolution of input data is sufficient, we study the behavior of the integral kernel and change the integral kernel to overcome the adverse effect of insufficient resolution of the input gravity data are the novel contributions of the study. For numerical tests, we have choose a test area with real gravity data in the west of Iran and The numerical results approve the success of our proposed method to solve the problem of insufficient resolution of the input gravity data for correct one-step inversion.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 902

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    19
  • Issue: 

    3
  • Pages: 

    19-34
Measures: 
  • Citations: 

    0
  • Views: 

    20
  • Downloads: 

    14
Abstract: 

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world applications, this assumption is violated since the probability distribution of the source and target domains are different. This issue is known as domain shift. Therefore, transfer learning and domain adaptation generalize the model to face target data with different distribution. In this paper, we propose a domain adaptation method referred to as IMage Alignment via KErnelized feature learning (IMAKE) in order to preserve the general and geometric information of the source and target domains. IMAKE finds a common subspace across domains to reduce the distribution discrepancy between the source and the target domains. IMAKE adapts both the geometric and the general distributions, simultaneously. Moreover, IMAKE transfers the source and target domains into a shared low dimensional subspace in an unsupervised manner. Our proposed method minimizes the marginal and conditional probability distribution differences of the source and target data via maximum mean discrepancy and manifold alignment for geometrical distribution adaptation. IMAKE maps the input data into a common latent subspace via manifold alignment as a geometric matching method. Therefore, the samples with the same class labels are collected around their means, and samples with different class are separated, as well. Moreover, IMAKE maintains the source and target domain manifolds to preserve the original data position and domain structure. Also, the use of kernels and mapping data into Hilbert space provides more accurate separation between different classes and is suitable for data with complex and unbalanced structures. The proposed method has been evaluated using a variety of benchmark visual databases with 36 experiments. The results indicate the significant improvements of the proposed method performance against other machine learning and transfer learning approaches.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 20

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 14 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1392
  • Volume: 

    20
Measures: 
  • Views: 

    434
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 434

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    1395
  • Volume: 

    8
Measures: 
  • Views: 

    312
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 312

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

MOUSAVI S.M. | SHOKOOHI A.R.

Issue Info: 
  • Year: 

    2019
  • Volume: 

    15
  • Issue: 

    2
  • Pages: 

    162-175
Measures: 
  • Citations: 

    0
  • Views: 

    694
  • Downloads: 

    0
Abstract: 

Drought management and planning are based on recognizing drought characteristics and its spatial and temporal extent. In the present research, SPEI12 was calculated using 4 kernels including rectangular, triangular, circular and Gaussian at 12 climatological stations in Zayandeh Roud watershed. Four important characteristics of drought including the time of occurrence, duration, magnitude and severity were evaluated by applying the highest weight to the 5th month. It was revealed that other kernels were more sensitive in recognizing the four drought characteristics compared to rectangular. While the rectangular kernel showed the highest coefficient of variation (CV) in drought duration, the Gaussian kernel had the least CV in duration and magnitude and the circular kernel the least CV in severity. Moreover, it was found that the Gaussian kernel was more successful in detecting the occurrence of drought in comparison with others. Finally, the results of this research indicated that rectangular kernel i. e. using equal weights for all months in deriving SPEI, may lead to overestimate or underestimate drought characteristics.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1394
  • Volume: 

    23
Measures: 
  • Views: 

    287
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 287

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    1384
  • Volume: 

    24
Measures: 
  • Views: 

    421
  • Downloads: 

    0
Abstract: 

هدف دستیابی به نتایج بهتردر حذف نویزتصویر به طورخاص یک روش RI-NLM3D مبتنی بر اوراکل پیشنهاد شده است که در آن شباهت های بین وکسل ها و patch ها در تصویر نویزی با استفاده از روش ODCT3D محاسبه و سپس برای حذف نویز تصویر نویزی اصلی از آن استفاده می شود .دراین روش از یک قاعده آماری مبتنی بر فاصله بین میانگین patch های حجم پیش فیلتر شده استفاده می شود. patch ها با یک اختلاف شدت بزرگتر از h، کمکی به فرآیند حذف نویز نمی کنند. از این روش با عنوان NLM 3 D مستقل از دوران پیش فیلتر شده یاد می شود.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 421

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button