Background and Objective: Increased amount of phosphate in the aqueous solutions disrupts the balance of aquatic organisms leading to serious environmental problems. This study aimed to evaluate the experimental phosphate removal using graphene oxide nanoparticles. Method: In this study, the used adsorbent was initially synthesize by Hummer method its surface was covered by epoxy and hydroxyl functional groups. The adsorbent synthesized on the surface increases the hydrophilic property and promotes the use of graphene oxide in aqueous solutions. The effects of various parameters including the amount of adsorbent, pH, initial concentration, temperature, and contact time on adsorption were studied. Further kinetic and thermodynamic studies were performed on the data. Findings: The highest absorption rate by 0. 2 g of adsorbent was equal to 75% at pH =3 of the solution after 3-hour contact with absorbent. The results show that the kinetic pseudo-second-order model fits the data. The experimental data were adjusted with Langmuir model. Discussion and Conclusion: According to the results, graphene oxide adsorbent as an adsorbent for the removal of phosphate has a good ability to adapt to the environment.