Search Result

29937

Results Found

Relevance

Filter

Newest

Filter

Most Viewed

Filter

Most Downloaded

Filter

Most Cited

Filter

Pages Count

2994

Go To Page

Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    1391
  • Volume: 

    4
Measures: 
  • Views: 

    297
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 297

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    1382
  • Volume: 

    3
  • Issue: 

    (ویژه نامه 10)
  • Pages: 

    57-58
Measures: 
  • Citations: 

    0
  • Views: 

    573
  • Downloads: 

    0
Abstract: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 573

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    1
  • Issue: 

    1
  • Pages: 

    4-9
Measures: 
  • Citations: 

    0
  • Views: 

    50
  • Downloads: 

    24
Abstract: 

Nursing care during dialysis involves managing symptoms and preventing complications among patients undergoing hemodialysis or peritoneal dialysis. In this regard, to improve the quality of nursing care during dialysis, several approaches were developed to enhance hemodialysis adequacy and prevent complications,however, machine learning (ML) emerged as a methodological approach for eval-uating hemodialysis adequacy and complications. The current study aims to analyze ML approach in predicting and managing hemo-dialysis by R programming language analysis to provide a therapeutic concept for hemodialysis management in critical nursing care. An R programming language was used to perform the logical analysis of the data. ML algorithms based on usage rate included logistic regression (LR), Support Vector machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Complement Naive Bayes (CNB), Takagi-Sugeno-Kang fuzzy system (G-TSK-FS), k-nearest neighbors' classifier (KNN), Stochastic gradient descent (SGD), Linear Discriminant Analysis (LDA), and Multi-adaptive neural-fuzzy system (MANFIS). Also, the use of ML in nursing care during hemodialysis is categorized into three indications for predicting hemodialysis adequacy, complications, and vascular access performance. Using ML in hemodialysis nursing care is a growing research interest. The main application areas are the prediction of hemodialysis adequacy, complications, and vascular access performance. LR and SVM are practical ML algorithms for constructing AI tools to improve hemodialysis management.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 50

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 24 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MITCHELL T.M.

Issue Info: 
  • Year: 

    1999
  • Volume: 

    42
  • Issue: 

    11
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    105
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 105

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    1192
  • Issue: 

    -
  • Pages: 

    127-137
Measures: 
  • Citations: 

    1
  • Views: 

    87
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 87

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

NEURAL NETWORKS

Issue Info: 
  • Year: 

    2006
  • Volume: 

    19
  • Issue: 

    2
  • Pages: 

    208-214
Measures: 
  • Citations: 

    1
  • Views: 

    159
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 159

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

SCIENTIA IRANICA

Issue Info: 
  • Year: 

    2020
  • Volume: 

    27
  • Issue: 

    6 (Transactions A: Civil Engineering)
  • Pages: 

    2645-2656
Measures: 
  • Citations: 

    0
  • Views: 

    98
  • Downloads: 

    164
Abstract: 

This article presents a review of selected articles about structural engineering applications of machine learning (ML) in the past few years. It is divided into the following areas: structural system identification, structural health monitoring, structural vibration control, structural design, and prediction applications. Deep neural network algorithms have been the subject of a large number of articles in civil and structural engineering. There are, however, other ML algorithms with great potential in civil and structural engineering that are worth exploring. Four novel supervised ML algorithms developed recently by the senior author and his associates with potential applications in civil/structural engineering are reviewed in this paper. They are the Enhanced Probabilistic Neural Network (EPNN), the Neural Dynamic Classification (NDC) algorithm, the Finite Element machine (FEMa), and the Dynamic Ensemble learning (DEL) algorithm.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 98

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 164 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

Front Health Inform

Issue Info: 
  • Year: 

    2021
  • Volume: 

    10
  • Issue: 

    65
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    34
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 34

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2019
  • Volume: 

    14
  • Issue: 

    5
  • Pages: 

    380-385
Measures: 
  • Citations: 

    0
  • Views: 

    441
  • Downloads: 

    0
Abstract: 

In this study, the groundwater level of the Kabodarahang aquifer located in Hamadan Province, Iran, is simulated using MODFLOW, Extreme learning machine (ELM), and Wavelet-Extreme learning machine (WA-ELM) Models. The correlation coefficient and scatter index values for the MODFLOW model are calculated 0. 917 and 0. 0004, respectively. Then, by different input combination and using the stepwise selection, 10 different models are introduced for the ELM and WA-ELM models with different lags. By evaluating all activation functions of the ELM model, the sigmoid activation function predicts groundwater level values with more accuracy. Also, Daubechies2 is selected as the mother wavelet of the WA-ELM models. According to different numerical models results, the WA-ELM model is selected as the superior model in prediction of groundwater level. For the superior model, the correlation coefficient and Nash-Sutcliffe efficiency coefficient are calculated 0. 959 and 0. 915, respectively. These values for ELM model was respectively computed as 0. 828 and 0. 672.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 441

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    52
  • Issue: 

    3
  • Pages: 

    195-204
Measures: 
  • Citations: 

    0
  • Views: 

    156
  • Downloads: 

    73
Abstract: 

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. machine learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using deep machine learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 156

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 73 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button