Let $\mathcal{R}$ be the commutative ring $\mathcal{R}=\mathbb{Z}_{p^2}[x]/\langle x^{2} \rangle$ with identity and ${Z^{*}}(\mathcal{R})$ be the set of all non-zero zero-divisors of $\mathcal{R}$. Then, $\Gamma(\mathcal{R})$ is said to be a zero-divisor graph if and only if $a \cdot b= 0$ where $a,b \in V(\Gamma(\mathcal{R})) = {Z^{*}}(\mathcal{R})$ and $(a,b) \in E(\Gamma(\mathcal{R}))$. Let $\lambda_1,\lambda_2,\dots,\lambda_n$ be the eigenvalues of the adjacency matrix, and let $\mu_1,\mu_2,\dots,\mu_n$ be the eigenvalues of the Laplacian matrix of $\Gamma(\mathcal{R})$. Then %the energy of $\Gamma(\mathcal{R})$ is defined as the sum of the absolute values of the eigenvalues of the graph $\Gamma(\mathcal{R})$ and the Laplacian energy of $\Gamma(\mathcal{R})$ is the sum of the absolute deviations of its Laplacian matrix's eigenvalues of the graph $\Gamma(\mathcal{R})$. In this paper,we discuss the energy $\mathcal{E}(\Gamma(\mathcal{R}))=\sum_{i=1}^n \abs{\lambda_{i}}$ and the Laplacian energy $\mathcal{LE}(\Gamma(\mathcal{R}))=\sum_{i=1}^n \abs{\mu_{i}-\frac{2m}{n}}$ where $n$ and $m$ are the order and size of $\Gamma(\mathcal{R})$.