Search Results/Filters    

Filters

Year

Banks


Expert Group





Full-Text


Author(s): 

Issue Info: 
  • Year: 

    2018
  • Volume: 

    82
  • Issue: 

    -
  • Pages: 

    330-335
Measures: 
  • Citations: 

    1
  • Views: 

    90
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2020
  • Volume: 

    19
  • Issue: 

    1
  • Pages: 

    424-435
Measures: 
  • Citations: 

    0
  • Views: 

    148
  • Downloads: 

    147
Abstract: 

Quercetin (QU) is an important flavonoid compound presenting lots of biological activities, but its application has been limited due to its low aqueous solubility and instability. In this study, conducted to improve these properties of the quercetin, quercetin-encapsulated PLGA nanoparticles were prepared, characterized, and evaluated for antioxidant and hemolytic activity. Nanoparticles were produced by single emulsion solvent evaporation method. Four different process parameters initial QU amount, PVA concentration, PVA volume, and initial PLGA amount were investigated to obtain the nanoparticles which have minimum particle size and maximum entrapment efficiency. Synthesized nanoparticles were evaluated for particle size, entrapment efficiency, and reaction yield. Additionally, antioxidant properties and in-vitro hemolytic activity of quercetin loaded nanoparticles with different particle size were also evaluated for the first time in the literature. The antioxidant activity results showed that nanoparticles have different antioxidant activity, depending on the amount of quercetin release from nanoparticles at different particle sizes. The hemolytic activity results show that all nanoparticles exhibited favorable compatibility to red blood cells and no significant hemolytic effect was observed.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 148

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 147 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

NANOMEDICINE JOURNAL

Issue Info: 
  • Year: 

    2020
  • Volume: 

    7
  • Issue: 

    4
  • Pages: 

    263-271
Measures: 
  • Citations: 

    0
  • Views: 

    107
  • Downloads: 

    46
Abstract: 

The usage of clinical devices in the cardiovascular treatment, hemodialyze system and other biomedical applications has improved recently. Direct contacts of biomaterials like poly(lactic acid) biopolymer with blood result in the activating of platelets, white blood cells, coagulation structure and complement cascades. Poly(lactic acid) is a sustainable, renewable, compostable, biobased, biodegradable, bioabsorbable, biocompatible polymer. This polymer has many applications in the synthesis of blood contacting mats like nanofibrous vascular scaffolds and hemodialyze nanosheets. Mechanical interruption of the blood vessel wall throughout grafting of cardiovascular devices starts local hemostatic replies. Improving the safety of the blood contacting nanostructure grafts is a main necessity. The controlling of the interactions of proteins and platelets to the surface of a blood contacting biomaterial is a significant factor. So, the assessments of these material’ s influences on blood are necessary. This article references more than 80 articles published in the last decade and reviews the latest HEMOCOMPATIBILITY assays of poly(lactic acid) nanostructures used in the blood contacting field.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 107

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 46 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2019
  • Volume: 

    4
  • Issue: 

    1
  • Pages: 

    10-15
Measures: 
  • Citations: 

    0
  • Views: 

    145
  • Downloads: 

    89
Abstract: 

applications such as wound healing and orthopedic implant. Since most of the future applications of therapeutic nanofiber are interacting with human blood components, it is important to investigate HEMOCOMPATIBILITY. Methods: In this study, nanofibers with antibacterial properties were synthesized by electrospun of polymeric composite of chitosan (CS), poly (ethylene oxide) (PEO) and vancomycin (vanco). The results obtained from scanning electron microscopy (SEM), FTIR spectroscopy, antibacterial and hemolysis tests of nanofiber were evaluated. The kinetic and drug release mechanism of drug loaded electrospun samples were also investigated. Results: The surface morphology of a composite nanofiber indicated that the nanofiber is flat and smooth. The results of antibacterial tests showed that prepared nanofiber has antibacterial properties. Hemolysis test indicate that this nanofiber has non hemolytic impact on red blood cells (RBCs). Also, it was found that the mechanism of antibiotic release can be described as Fickian diffusion model. Conclusions: Infections and pathophysiological factors cause delayed healing of wound healing. Therefore, using antibacterial nanofibers for elimination of antibacterial infection from wounds, accelerate wound healing.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 145

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 89 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    19
  • Issue: 

    2
  • Pages: 

    1-7
Measures: 
  • Citations: 

    0
  • Views: 

    17
  • Downloads: 

    2
Abstract: 

Gelatin (GEL) is most extensively used in various fields, particularly in therapeutics and pharmaceuticals. GEL was extracted from goat skin using hot temperature extraction process and compared with that of commercial GEL. The physico-chemical characterization and functional properties were investigated by using temperature denaturation (Td), water-holding and fat-binding capacities (WHC and FBC), colour measurement and UV-light spectrum. In vitro biocompatibility was studied for the first time and was evaluated by blood coagulation index (BCI) and haemolytic tests for using as wounds dressing. The results revealed thermal stability of goat GEL at Td 37°C. WHC and FBC capacities represented 2.5 and 1.2 g/ml, respectively. The hunter colour spaces a*, b* and L* showed a -0.27, -1.97 and 25.23 values, respectively. UV-Vis absorption spectrum of the goat GEL showed a maximum absorption peak at 280 nm. The in vitro anticoagulant activities of extracting GEL were higher than 70% after incubation for one hour. After being in contact with red blood cells for 1 h, the haemolysis ratio increased from to 0.46 to 1.4 when the concentration of goat GEL increased from 1 to 50 mg/ml suggesting the safety of the tested samples. These results suggest that thromboresistivity and HEMOCOMPATIBILITY of this biopolymer retained the biological activity of our samples for biomaterial applications. According to this, goat GEL successfully competes with, and significantly could be useful for substitution of bovine in wound healing.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 17

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    13
  • Issue: 

    1
  • Pages: 

    123-133
Measures: 
  • Citations: 

    0
  • Views: 

    26
  • Downloads: 

    27
Abstract: 

Purpose: A hemocompatible substrate can offer a wonderful facility for nitric oxide (NO) production by vascular endothelial cells in reaction to the inflammation following injuries. NO inhibits platelet aggregation this is especially critical in small-diameter vessels. Methods: The substrate films were made of polyurethane (PU) in a casting process and after plasma treatments, their surface was chemically decorated with polyethylene glycol (PEG) 2000, gelatin, gelatin-aspirin, gelatin-heparin and gelatin-aspirin-heparin. The concentrations of these ingredients were optimized in order to achieve the biocompatible values and the resulting modifications were characterized by water contact angle and Fourier transform infra-red (FTIR) assays. The values of NO production and platelet adhesion were then examined. Results: The water contact angle of the modified surface was reduced to 26 ±,4⸰,and the newly developed hydrophilic chemical groups were confirmed by FTIR. The respective concentrations of 0. 05 mg/ml and 100 mg/mL were found to be the IC50 values for aspirin and heparin. However, after the surface modification with aspirin, the bioactivity of the substrate increased in compared to the other experimental groups. In addition, there was a synergistic effect between these reagents for NO synthesis. While, heparin inhibited platelet adhesion more than aspirin. Conclusion: Because of the highly hydrophilic nature of heparin, this reagent was hydrolyzed faster than aspirin and therefore its influence on platelet aggregation and cell growth was greater. Taken together, the results give the biocompatible concentrations of both biomolecules that are required for endothelial cell proliferation, NO synthesis and platelet adhesion.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 26

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 27 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 2
Issue Info: 
  • Year: 

    2020
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    61-69
Measures: 
  • Citations: 

    0
  • Views: 

    739
  • Downloads: 

    0
Abstract: 

Aims: Since one of the main problems in bone tissue repair is bacterial infections, recently the development of drug-eluting nanocomposite scaffolds for bone regenerative medicine applications has attracted significant attention. Materials & Methods: In the present study, polycaprolactone (PCL)-based composite scaffolds containing 10% V titanium dioxide nanoparticles (21nm), and bioactive glass particles (6μ m), were prepared without drug and also loaded by tetracycline hydrochloride (TCH) antibiotic (0. 57 and 1. 15mg/mL) through solvent casting method for bone tissue engineering applications. Structural characterizations based on scanning electron microscopy and FTIR analysis were utilized to study the chemical bonds of glass/ceramic particles, and antibiotic crystals on the surface. In addition, in vitro cytotoxicity, and antibacterial analysis were performed by MTT, and Agar well-diffusion assays, respectively. Findings: In this study, polymeric and composite scaffolds were fabricated with TCH clusters decorated on the surface. It was shown that the bioactive glass/PCL scaffolds loaded by 0. 57mg/mL of TCH revealed signi􀏐 icant antibacterial effect, despite the acceptable cell viability. Conclusion: These scaffolds seem to be of interest as a potential candidate in drug-eluting scaffolds for bone tissue engineering applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 739

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2015
  • Volume: 

    25
  • Issue: 

    131
  • Pages: 

    67-78
Measures: 
  • Citations: 

    0
  • Views: 

    1161
  • Downloads: 

    0
Abstract: 

Background and purpose: Amniotic membrane (AM) is a proper candidate for vascular tissue engineering. The aim of this study was to evaluate the HEMOCOMPATIBILITY of the epithelial surface of the AM.Materials and methods: In this study, we assessed the effects of the epithelial surface of the AM on blood coagulation system by measuring activated partial thromboplastin time (aPTT), prothrombin time (PT), clotting time (CT), hemolysis and platelet aggregation compared with expanded Polytetrafluoroethylene (ePTFE). The amount of P-selectin was measured to test the platelet activation using ELISA. Adhesion and morphological changes of platelets were analyzed by scanning electron microscopy.Results: The results of aPTT, PT and CT tests showed that the epithelial surface of the AM activated the external coagulation pathway less than ePTFE and had same effects as this synthetic material on the internal coagulation pathway. Furthermore, the epithelial surface of the AM suppressed aggregation, activation and adhesion of the platelets and in turn inhibited initiation of clot formation. In contrast, more number of platelets were adhered and activated on the surface of ePTFE.Conclusion: Based on suitable features of the AM and HEMOCOMPATIBILITY results of amniotic epithelial cells which have stem cell characteristics, the AM could be a good candidate for vascular tissue engineering.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1161

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2023
  • Volume: 

    34
  • Issue: 

    -
  • Pages: 

    103928-103928
Measures: 
  • Citations: 

    1
  • Views: 

    0
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 0

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    9
  • Issue: 

    2
  • Pages: 

    158-169
Measures: 
  • Citations: 

    1
  • Views: 

    255
  • Downloads: 

    179
Abstract: 

Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods with the biological components following intravenous and oral routes of administration to assess nanoparticles safety. Intravenously injected ZnO nanorods were found to induce the significant reduction in the red blood cells and platelet counts. Elevated levels of serum enzymes such as serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase were observed following intravenous and oral administration. Also, increased levels (p<0.05) of oxidative stress markers such as glutathione in the liver of intravenous treated mice and liver, spleen of oral treated mice; and lipid peroxidation in the spleen of intravenous treated mice compared to untreated mice. Significant DNA damage was observed in liver, spleen, and kidney of mice treated intravenously; liver and kidney of mice treated orally compared to untreated mice. Histology revealed focal venous congestion in the liver of intravenous and oral treated mice; more red pulp congestion in the spleen of oral treated mice compared to the intravenous treated group; pulmonary vascular congestion in intravenous (mild) and oral treated mice (moderate). In conclusion differences in the histology of the organs tested could be due to the differences in the distributed concentrations of nanoparticles. These findings can be considered helpful for the development of biocompatible nanoparticles for biomedical applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 255

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 179 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button