Search Results/Filters    

Filters

Year

Banks



Expert Group











Full-Text


Author(s): 

Issue Info: 
  • Year: 

    2023
  • Volume: 

    13
  • Issue: 

    2
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    16
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2024
  • Volume: 

    21
  • Issue: 

    4
  • Pages: 

    912-923
Measures: 
  • Citations: 

    1
  • Views: 

    7
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    12
  • Issue: 

    47
  • Pages: 

    183-196
Measures: 
  • Citations: 

    0
  • Views: 

    18
  • Downloads: 

    1
Abstract: 

Rapidly expanding domains such as the Internet of Things require sophisticated approaches to securing interconnected devices against cyber threats. The following study intends to fill in a crucial gap in the state of effective intrusion detection systems for the Internet of Things based on a comparison and analysis of various Hyperparameter Optimization approaches to improve existing and future detection systems. In other words, our main goal was to investigate and compare various Hyperparameter Optimization strategies to find and assess the most effective way to improve the performance of deep learning -based IDS. Our methodology was comprised of the following comparative Optimization analysis used to compare a hybrid Optimization approach against stand-alone implementation of Harmony Search and Bayesian Optimization. The analysis was done quantitatively based on IDS trained and tested on simulated Internet of Things network data, and IDS performance was evaluated by the following metrics : accuracy, precision, recall, and F1 score. The comparison of results showed that the hybrid Optimization demonstrated the best performance indicators in terms of accuracy at 99.74%, precision at 99.7%, recall at 99.72%, and F1 score at 99.71%. The results of the study confirm the efficiency of implementing multiple Optimization approaches and reveal the potential effectiveness of such combination for effective Hyperparameter Optimization of deep learning -based IDS in the Internet of Things environment.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 18

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2024
  • Volume: 

    44
  • Issue: 

    3
  • Pages: 

    635-650
Measures: 
  • Citations: 

    1
  • Views: 

    8
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2025
  • Volume: 

    15
  • Issue: 

    1
  • Pages: 

    129-144
Measures: 
  • Citations: 

    0
  • Views: 

    20
  • Downloads: 

    0
Abstract: 

In some countries, people commonly consume hazelnuts in their shells to extend shelf life or due to technological limitations. Therefore, open-shell hazelnuts are more marketable. At the semi-industrial scale, open-shell and closed-shell hazelnuts are currently separated from each other through visual inspection. This study aims to develop a new algorithm to separate open-shell hazelnuts from cracked or closed-shell hazelnuts. In the first approach, dimension reduction techniques such as Sequential Forward Feature Selection (SFFS) and Principal Component Analysis (PCA) were used to select or extract a combination of color, texture, and grayscale features for the model’s input. In the second approach, individual features were used directly as inputs. In this study, three famous machine learning models, including Support Vector Machine (SVM), K-nearest neighbors (KNN), and Multi-Layer Perceptron (MLP) were employed. The results indicated that the SFFS method had a greater effect on improving the performance of the models than the PCA method. However, there was no significant difference between the performance of the models developed with combined features (98.00%) and that of the models using individual features (98.67%). The overall results of this study indicated that the MLP model, with one hidden layer, a dropout of 0.3, and 10 neurons using Histogram of Oriented Gradients (HOG) features as input, is a good choice for classifying hazelnuts into two classes of open-shell and closed-shell.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 20

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Pourhaji S. | Pourmand A.

Issue Info: 
  • Year: 

    2024
  • Volume: 

    53
  • Issue: 

    4
  • Pages: 

    291-297
Measures: 
  • Citations: 

    0
  • Views: 

    44
  • Downloads: 

    5
Abstract: 

In this paper, recommended spiral passive micromixer was designed and simulated. spiral design has the potential to create and strengthen the centrifugal force and the secondary flow. A series of simulations were carried out to evaluate the effects of channel width, channel depth, the gap between loops, and flowrate on the micromixer performance. These features impact the contact area of the two fluids and ultimately lead to an increment in the quality of the mixture. In this study, for the flow rate of 25 μl/min and molecular diffusion coefficient of 1×10-10 m2/s, mixing efficiency of more than 90% is achieved after 30 (approximately one-third of the total channel length). Finally, the optimized design fabricated using proposed 3D printing method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 44

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 5 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2008
  • Volume: 

    32
  • Issue: 

    B3
  • Pages: 

    265-277
Measures: 
  • Citations: 

    0
  • Views: 

    845
  • Downloads: 

    162
Abstract: 

Application of the network equivalent concept for external system representation for power system transient analysis is well known. However, the challenge to utilize an equivalent network, approximated by a rational function, is to guarantee the passivity of the corresponding model. In this regard, special techniques are required to enforce the passivity of the equivalent model through a post processing approach that minimizes its impact on the original model characteristics. In this paper, the passivity is enforced by expressing the problem in terms of a convex Optimization problem that guarantees the global optimal solution. The convex Optimization problem is efficiently solved by recently developed numerical interior–point methods. This passivity enforcement is also global which indicates that the passivity enforcement in one region does not lead to passivity violation in other regions.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 845

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 162 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

Environ Proces

Issue Info: 
  • Year: 

    1396
  • Volume: 

    4
  • Issue: 

    3
  • Pages: 

    563-572
Measures: 
  • Citations: 

    1
  • Views: 

    156
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 156

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    1
  • Issue: 

    3
  • Pages: 

    35-47
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    0
Abstract: 

با گسترش شبکه های کامپیوتری و رشد روزافزون کاربردهای مبتنی بر اینترنت اشیاء (IoT)، شبکه های حسگر بی سیم (WSN)، و شبکه های پویا مانند MANET، مساله بهینه سازی مسیریابی به یکی از چالش های بنیادین در علوم رایانه و مهندسی شبکه تبدیل شده است. الگوریتم های سنتی همچون دایکسترا و بلمن-فورد اگرچه در محیط های پایدار کارایی نسبی دارند، اما به دلیل محدودیت در سازگاری با تغییرات دینامیک و چندهدفه بودن مسائل جدید، پاسخگوی نیازهای محیط های مدرن نیستند. در این راستا، هدف اصلی این مقاله، بررسی جامع نقش و کارایی الگوریتم فاخته (Cuckoo Optimization Algorithm - COA) به عنوان یک الگوریتم فراابتکاری نوین در بهینه سازی مسیریابی شبکه های کامپیوتری است. الگوریتم فاخته با الهام از رفتار تولیدمثل انگلی پرنده فاخته و سازوکار پرش های Lévy، به عنوان رویکردی ساده اما توانمند به ویژه برای حل مسائل غیرخطی، چندهدفه و پویا معرفی شده است. در این مقاله، ضمن تبیین ساختار، مراحل اجرایی و مزایا و معایب الگوریتم فاخته نسبت به روش های دیگر (مانند PSO، GA و ACO)، به مرور مطالعات میدانی و شبیه سازی های انجام شده در حوزه های WSN، MANET، SDN و IoT پرداخته شده است. نتایج پژوهش های گذشته نشان می دهد استفاده از COA سبب کاهش محسوس مصرف انرژی، بهبود نرخ تحویل بسته و افزایش طول عمر شبکه نسبت به الگوریتم های جایگزین شده است. همچنین، کاربردهای عملی COA در محیط های پویا و دارای تغییرات سریع توپولوژی، قابلیت ها و برتری های بیشتری نسبت به رقبای خود آشکار ساخته است. در ادامه، مقاله با تمرکز بر نتایج مقایسه ای میان COA و دیگر الگوریتم های فراابتکاری، نشان می دهد که الگوریتم فاخته به سبب سادگی ساختار، سرعت همگرایی بالا و توان جستجوی جامع تر، برای کاربردهای شبکه ای خصوصاً در سناریوهای داده محور و نوظهور، انتخاب مناسبی است. با این حال، چالش هایی نظیر نیاز به تنظیم بهینه پارامترها، تطبیق محدود با مسائل گسسته و عدم وجود استانداردسازی جامع نیز شناسایی شده است. بر همین اساس، پیشنهادهای پژوهشی آینده، بهره گیری از ترکیب COA با سایر الگوریتم ها، توسعه نسخه های یادگیری محور و به کارگیری آن در محیط های واقعی و بزرگ مقیاس را مورد تاکید قرار می دهد.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    83-95
Measures: 
  • Citations: 

    0
  • Views: 

    33
  • Downloads: 

    0
Abstract: 

2Introduction: Heart failure is a clinical syndrome resulting from structural or functional abnormalities of the heart, leading to reduced cardiac output or increased intracardiac pressure. When combined with cardiogenic shock, it becomes an emergency condition with a high mortality rate, necessitating immediate diagnosis and treatment. Accurate prediction of 30-day mortality in these patients is vital for timely care and patient survival. This study aimed to optimize the Random Forest algorithm by adjusting Hyperparameters to more accurately predict 30-day mortality in heart failure patients with cardiogenic shock. Method: In this research, data from 201 cardiac patients aged over 18 years who experienced cardiogenic shock at Rouhani Hospital in Babol in 2020, were used. Thirty-four selected features such as age, history of cardiac surgery, pH, lactate levels, diabetes, etc., were examined, and their one-month mortality was tracked through telephone follow-ups. Results: The results showed that increasing age (above 57 years), decreasing pH (below 7. 3), and elevating lactate levels (above 2) significantly increased the risk of 30-day mortality. By optimizing the Hyperparameters of the Random Forest algorithm (ntree=1000 and mtry=14), prediction accuracy improved from 66. 0% to 71. 8%. Conclusion: This study demonstrates that the accuracy of the Random Forest algorithm depends on its input Hyperparameters and that optimizing these parameters can lead to a more precise prediction of mortality in heart failure patients with cardiogenic shock. With appropriate Optimization, this algorithm can serve as an effective tool for the early detection of high-risk patients and timely provision.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 33

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 3
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button