Currently, carbon Quantum dots have attracted considerable attention due to their unique properties and desirable advantages. High crystallinity, water solubility, good dispersibility, small size, low toxicity, inexpensive raw materials, high chemical stability, environmental compatibility, low cost, stability under light, desirable charge transfer with advanced electronic conductivity, as well as specific thermal and mechanical properties are some of these features. Carbon Quantum dots have various applications in different fields. Fabrication of precise chemical and biological sensors, bioimaging, solar cells, drug tracking, nanomedicine, light-emitting diodes (LEDs), and electrocatalysts are some of these applications. Biological sensors based on carbon Quantum dots are capable of detecting various metal ions, acids, proteins, biotin, polypeptides, DNA and miRNA, water pollutants, hematin, drugs, vitamins, and other chemicals. In the present study, the properties of carbon Quantum dots and some of their fabrication and applications methods have been addressed. In continuation of the paper, the effect of carbon Quantum dots on important factors in plants such as growth and development, photosynthesis, absorption and transportation of substances, resistance to biotic and abiotic stresses, as well as their application in agriculture has been investigated.