Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    1383
  • Volume: 

    7
Measures: 
  • Views: 

    304
  • Downloads: 

    0
Abstract: 

پیشرفت روزافزون کامپیوترها و متعاقب آن توسعه نرم افزارهای طراحی صنعتی پروسه طاقت فرسای طراحی و ساخت ادوات و ماشین آلات حتی پیچیده را سهل و آسان نموده و با ایجاد فضائی قرین با واقعیت به مهندسین طراح امکان نگرش جامع بر ساخت و عملکرد ماشین آلات را پیش از آنکه عمل شکل دهی، ساخت و بهره برداری آنها به واقع آغاز گردد، فراهم می نماید.انتقال مواد در مراکز صنعتی بخش قابل ملاحظه ای از فعالیتهای روزمره را در بر می گیرد. طراحی و ساخت یک نمونه ماشین انتقال بار Transfer car با قابلیت جابجائی بر روی ریل در پروسه ساخت یک واحد صنعتی مد نظر بوده است. این عمل با تهیه مدل کامپیوتری و با استفاده از نرم افزارهای Solid Works، Cosmos Works و Design Star انجام شده است. انتخاب مواد و پروفیل فلزات مورد نیاز منطبق با محصولات موجود در بازارهای داخلی انجام پذیرفته و نتایج بر اساس استاندارد طراحی DIN تنظیم شده اند. همچنین معیارهای متداول در طراحی برای کنترل پروژه و حصول ضرایب اطمینان مناسب مورد استفاده قرار گرفته اند. طرح نهائی پس از گذراندن آزمونهای ضروری، تحت پروسه های لازم برای ساخت قرار گرفته است.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 304

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    53
  • Issue: 

    1
  • Pages: 

    61-67
Measures: 
  • Citations: 

    0
  • Views: 

    161
  • Downloads: 

    31
Abstract: 

Face recognition from digital images is used for surveillance and authentication in cities, organizations, and personal devices. Internet of Things (IoT)-powered face recognition systems use multiple sensors and one or more servers to process data. All sensor data from initial methods was sent to the central server for processing, raising concerns about sensitive data disclosure. The main concern was that all data from all sectors that could contain confidential information was placed in a central server. Federated learning can solve this problem by using several local model training servers for each region and a central aggregation server to form a global model in IoT networks. This article presents a novel approach to optimize data Transfer and convergence time in federated learning for a face recognition task using Non-dominated Sorting Genetic Algorithm II (NSGA II). The aim of the study is to balance the trade-off between training time and model accuracy in a federated learning environment. The results demonstrate the effectiveness of the proposed approach in reducing data Transfer and convergence time, leading to improved performance in face recognition accuracy. This research provides insights for researchers and practitioners to enhance the efficiency of federated learning in real-world applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 161

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 31 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Writer: 

Sharifi Javad

Issue Info: 
  • Year: 

    2014
  • Volume: 

    3
Measures: 
  • Views: 

    198
  • Downloads: 

    61
Abstract: 

PLEASE CLICK ON PDF TO VIEW THE ABSTRACT.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 198

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 61
Author(s): 

MCANALLY K.I. | MARTIN R.L.

Issue Info: 
  • Year: 

    2002
  • Volume: 

    50
  • Issue: 

    4
  • Pages: 

    263-266
Measures: 
  • Citations: 

    1
  • Views: 

    200
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 200

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2005
  • Volume: 

    41
  • Issue: 

    -
  • Pages: 

    48-53
Measures: 
  • Citations: 

    1
  • Views: 

    119
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 119

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    52
  • Issue: 

    4
  • Pages: 

    281-291
Measures: 
  • Citations: 

    0
  • Views: 

    154
  • Downloads: 

    18
Abstract: 

Automatic topic detection seems unavoidable in social media analysis due to big text data which their users generate. Clustering-based methods are one of the most important and up-to-date categories in topic detection. The goal of this research is to have a wide study on this category. Therefore, this paper aims to study the main components of clustering-based-topic-detection, which are embedding methods, distance metrics, and clustering algorithms. Transfer learning and consequently pretrained language models and word embeddings have been considered in recent years. Regarding the importance of embedding methods, the efficiency of five new embedding methods, from earlier to recent ones, are compared in this paper. To conduct our study, two commonly used distance metrics, in addition to five important clustering algorithms in the field of topic detection, are implemented by the authors. As COVID-19 has turned into a hot trending topic on social networks in recent years, a dataset including one-month tweets collected with COVID-19-related hashtags is used for this study. More than 7500 experiments are performed to determine tunable parameters. Then all combinations of embedding methods, distance metrics and clustering algorithms (50 combinations) are evaluated using Silhouette metric. Results show that T5 strongly outperforms other embedding methods, cosine distance is weakly better than other distance metrics, and DBSCAN is superior to other clustering algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 154

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 18 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

Journal of Heart

Issue Info: 
  • Year: 

    0
  • Volume: 

    95
  • Issue: 

    -
  • Pages: 

    1343-1349
Measures: 
  • Citations: 

    1
  • Views: 

    210
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 210

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

VIRTUAL

Issue Info: 
  • Year: 

    621
  • Volume: 

    1
  • Issue: 

    1
  • Pages: 

    106-113
Measures: 
  • Citations: 

    1
  • Views: 

    201
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 201

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Chabokpour Jafar

Issue Info: 
  • Year: 

    2024
  • Volume: 

    7
  • Issue: 

    2
  • Pages: 

    194-209
Measures: 
  • Citations: 

    0
  • Views: 

    13
  • Downloads: 

    0
Abstract: 

In this paper, the evaluation of the performance of five flood prediction models in the Simineh-Rood River, Lake Urmia basin, Iran, is discussed in detail. To this purpose, the performance of Transfer Function, Saint-Venant equations, Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, and Support Vector Machine models are evaluated for 2018 and 2019 flood data. Specifically, the models are rated according to their accuracy, computational efficiency, and robustness under different flow regimes and at various forecast times. This now leads to a maximum Nash-Sutcliffe Efficiency of 0.91 for the Saint-Venant equations during the 2019 flood event, followed by ANN with 0.89, ANFIS with 0.87, SVM with 0.85, and lastly, Transfer Function with 0.78. The same is the case for peak flow discharge, which was best predicted by the Saint-Venant model to be 193.80 m³/s while the observed value was 200.83 m³/s. This model maintained its consistency with respect to low, medium, and high flows, where the values of NSE were 0.89, 0.92, and 0.91, respectively. However, compared to the other models, which took 0.5–8 s, it had a much larger computational time, 120 s for a 72-h simulation. The sensitivity analysis returned variable model responses to the quality of the input data; an input variation of 20% reduced the NSE of the Saint-Venant model to 0.73 and that of the Transfer Function to 0.44. This study provides quantitative insight into the choice of flood prediction methods in a semi-arid region, with respect to required accuracy, computational resources, and forecast lead-time.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 13

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button