Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Journal Issue Information

Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Title: 
Author(s): 

Journal: 

آب و فاضلاب

Issue Info: 
  • Year: 

    0
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    -
Measures: 
  • Citations: 

    0
  • Views: 

    1356
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1356

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Title: 
Author(s): 

Journal: 

آب و فاضلاب

Issue Info: 
  • Year: 

    0
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    -
Measures: 
  • Citations: 

    0
  • Views: 

    2623
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2623

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    1-12
Measures: 
  • Citations: 

    0
  • Views: 

    1520
  • Downloads: 

    0
Abstract: 

Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN). Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO) linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1520

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    13-22
Measures: 
  • Citations: 

    0
  • Views: 

    2655
  • Downloads: 

    0
Abstract: 

Iran is located in an arid and semi-arid zone with limited water resources. In urban areas where water supplies are short, effluents from wastewater treatment plants can be considered as a reliable alternative source to supply water, especially for such urban uses as flushing and landscape irrigation. The effluents can be used to supply the water for textile, chemical, plastic, and construction industries in addition to agricultural irrigation. While these demands can be supplied from non-potable water resources such as treatment effluents, the water required for drinking and cooking that accounts for only a small portion of the total consumption must be supplied from those resources that conform to quality standards. The objective of the present study was to develop incentive plans and innovative designs that would assist builders and inhabitants of high-rise buildings to implement and employ grey water reuse systems. The study also investigated the effects of emoploying two-storage septic tanks to improve such water parameters as BOD, COD, N, P, and TSS. Given the fact that water connection charges in Iran are only a function of total land and building areas with volumetric parameters excluded, the current pricing system for water and sewage connections needs to be revisited and duly adjusted. The additional costs of systems required for segregating black water from grey water and recirculating treated water within the building may not be economically justifiable and, thus, the incentive plans are expected to provide the required justification for both the water industry and the builders.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2655

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    23-35
Measures: 
  • Citations: 

    0
  • Views: 

    945
  • Downloads: 

    0
Abstract: 

An important consideration in water resources management is the total cost of the water supplied to customers. The factors involved in water supply costs are divided into the four main components of water distribution; purchase, supply, and harvest; treatment and disinfection; and facility running and maintenance costs, each of which comprises individual parameters. In this study, the parameters in the four components are investigated and prioritized using the factor analysis method. Results show that the parameters in each componet may be coalesced into two main factors. In the water distribution component, transportation, machinary rental, building depreciation, and machinery and equipment depreciation costs may be considered as one factor while vehicle depreciation and maintenance costs as well as the costs of fixed assets account for the second factor. The treatment component involves facility depreciation, labor, materials (disinfectants), equipment depreciaion, and building depreciation costs as the first factor while machinary rental cost forms its second factor. In the purchase component, machinery and equipment depreciation, water purchase, transportation, machinary rental, and vehicle depreciation costs form one factor while building depreciation costs form the second factor. The water facility component comprises one factor that includes machinery and production equipment depreciation, vehicle depreciation, building depreciation, and labor costs and its second factor includes asset depreciation, machinary rental, and labor costs.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 945

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 2
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    36-45
Measures: 
  • Citations: 

    0
  • Views: 

    1361
  • Downloads: 

    0
Abstract: 

Water crisis is of utmost importance due to the growing demand and consumption of water, especially in developing countries where its production and food security are facing serious challenges. Virtual water trade has been proposed as one strategy to combat the water scarcity crisis in arid and semi-arid regions. The strategy is based on the import of food and water-intensive supplies from neighboring regions that enjoy adequate supplies of water. Given the fact that the industrial sector has been proposed to serve as the basis of development in Zanjan Province, the present study was conducted to investigate the virtual water trade by the industrial sector in this province. For the purposes of this study, data from the statistical period 2010-2011 were obtained from the Statistical Center of Iran on enterprises employing ten member staffs or above. The data were used to categorize the industries surveyed, their water demands, and products to estimate the quantities of water needed for their continued operation. It was found that the highest quantities of virtual water in Zanjan are allocated to coking and petroleum plants, paper and cellulosic industries, and food and beverage processing factories with average values of 32.70, 26.14, and 11.63 cubic meters per million Rials, respectively. In addition, the total amount of virtual water exported from the industrial units operating in Zanjan Province is estimated at about 3.10 MCM, 50% of which belongs to base metal production. Conclusion: Our findings show that the industrial sector in Zanjan Province is a net exporter of virtual water.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1361

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    46-54
Measures: 
  • Citations: 

    0
  • Views: 

    888
  • Downloads: 

    0
Abstract: 

The growing pollution of water resources and the limited availability of water supplies have led to a growing interest by researchers to develop novel methods of water remediation and reuse. One such method is the use of ascorbic acid-stabilized zero-valent iron nanoparticles (AAS-ZVIN) for the removal of lead (Pb) from aqueous solutions. Using zero-valent iron nanoparticles stabilized with acid ascorbic under aerobic conditions, the present study was conducted to assess the efficiency of Pb removal from aqueous solutions and its optimization by the response surface methodology (RSM). For this purpose, use was made of the central composite design and the response surface methodology with the four input variables of ASS- ZVIN dose (0.5, 1, and 2 g L-1), pH (2, 5, and 7), contact time (5, 20, and 60 min), and initial Pb concentration (5, 10, and 20 mg L-1) to determine the optimal conditions for the process. Numerical optimization revealed that the optimum conditions for Pb removal (97.93%) included an ASS-ZVIN dose of 2 g L-1, an initial Pb (II) concentration of 25 mg L-1, a contact time of 60 min, and an initial solution pH of 7. The results also imply that not only does ASS-ZVIN offer a good potential for the remediation of water bodies contaminated with Pb, given its high reactivity for Pb removal, but that the RSM optimization process can be successfully employed for the optimization of the process in question.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 888

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    55-63
Measures: 
  • Citations: 

    0
  • Views: 

    1179
  • Downloads: 

    0
Abstract: 

Nitrate is a wide spread pollutant whose removal from aquesous solutions is a major goal of water treatment processes. The present experiment was conducted using a randomized complete block split design with three replications to investigate the effects of humic acid on the nitrate removal efficiency of nanoscale zero-valent iron particles. For this purpose, nanoscale zero-valent iron particles were synthesized using the co-precipitation method and stabilized on sand fractions to achieve better stability in the water environment. Different concentrations of humic acid (0, 0.25, and 0.75 mg/l) and nanoscale zero-valent iron particles (1, 1.5, and 2 mg/l) were used as the variables to evaluate the resulting changes in the water nitrate content. Results showed that nanoscale zero-valent iron particles were able to reduce nitrate ions and, thereby, remove it from the solution. Humic acid was found to reduce the nitrate removal efficiency of nanoscale zero-valent iron particles. The highest nitrate removal (58%) occurred at pH 4 with a nanoscale zero-valent iron concentration of 1 mg/l while the lowest was observed at pH 3.7% with a nanoscale zero-valent iron concentration of 2 mg/l. Humic acid, especially at its lower concentrations, also proved to be an important factor involved in reducing nitrate. In the absence of humic acid, the highest nitrate reduction efficiency of 44% was observed at pH 4. Finally, a pH value of 4 was found to be the optimum level for nitrate removal, which led to an average removal efficiency of 34%.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1179

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    64-73
Measures: 
  • Citations: 

    0
  • Views: 

    915
  • Downloads: 

    0
Abstract: 

Aniline is an almost undegradable compound found in many industrial effluents. It was the objective of this lab-scale applied-experimental study to determine the efficiency of the dissolved air flotation process in the removal of aniline from aquatic environments. Initially, the optimal conditions of pH and dosage of poly-aluminum chloride were determined using the jar test. The parameters involved in the dissolved air flotation process including coagulant concentration (10, 20, 30, 40, and 60 mg.l‒1), coagulation time (5, 15 ,10 , and 20 min), flotation time (5, 10, 15 and 20 s), saturation pressure (3.5 / 3, 4, and 5.4 atmospheres), and turbidity (10, 20, 30, 40, and 60 NTU) on the reduction of COD and aniline were then calculated. Results showed that the dissolved air flotation process was capable of reducing COD and aniline by 86.6% and 95%, respectively (at pH = 6, an initial aniline concentration of 200 mg/ L, a coagulation time of 10 min, a flotation time of 20 s, a saturation pressure of 4 atmospheres, and a concentration of 20 mg/L PAC). It was also shown that removal efficiency declines with increasing turbidity. It may, therefore, be claimed that the dissolved air flotation process is an effective method of removing aniline from aquatic environments.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 915

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    74-86
Measures: 
  • Citations: 

    0
  • Views: 

    1052
  • Downloads: 

    0
Abstract: 

Polycyclic aromatic hydrocarbon (PAH) compounds and normal alkanes form a large group of undegradable environmental contaminats. This study aims to determine the sources and distribution of oil pollution (PAH compounds and normal alkanes) in the sediments of the southwestern coastal areas of the Caspian Sea and to compare their levels with the relevant standards. For this purpose, 18 surface sediment samples were collected from depths of 10, 20, and 50 meters along two transects in the vertical direction located in the coastal areas of Sangachin and Hashtpar (Gilan Province). The samples were then examined using mass-spectrometric gas chromatography. The origins of n-alkanes were identified using CPI index (0.76-0.95), U/R (3.30‒6.57), and Pristane/Phytane (0.21‒0.42). The sources of PAHs were determined using the index ratios of LMW/HMW (1.93‒13.37), Phenanthrene/Anthracene (11.44‒ 16.7), Chrysene/Benzo (a) anthracene (4.69‒10/33), Fluoranthene/Pyrene (0.53‒0.69), and MP/P (0.05‒0.08). Results confirmed the dominant petrogenic source of the hydrocarbons found in the region. The total concentrations of 30 aliphatic hydrocarbons and PAHs in the sediments ranged from 823.8 to 3899.5 µg/g and from 626.95 to 3842.5362 ng/g, respectively. Comparison of the measured PAH concentrations with US sediment quality guidelines revealed that the levels of naphthalene, fluorine, Acenaphthylene, and Acenaphthene exceeded the ERLs at stations with depths of 50m in Sangachin and Hashtpar while comparisons with Canadian standards indicated that they were higher than PELs at all the stations sampled. A major point of great concern is the high concentration of naphthalene as the most toxic PAH compound, which naturally warrants due attention to adopt appropriate management programs.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1052

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    87-96
Measures: 
  • Citations: 

    0
  • Views: 

    1175
  • Downloads: 

    0
Abstract: 

Effluents bearing petroleum hydrocarbons must be treated prior to release into the environment due to the high toxicity of these compounds and the consequent hazards they pose to the receiving environment. The moving bed biofilm reactor (MBBR) is one of the several biofilm systems used in treating different types of wastewater that offers a good resistance to both toxic and hydraulic shocks. This study investigates the roles of the three air stripping, adsorption, and biodegradation mechanisms in the biofilm reactor using polyethylene sponge strips used as the biomass to treat the effluent from Tehran Refinery. Results and discussion: Based on the results obtained, the optimum values of loading rate, retention time, and media filling ratio were equal to TPH=278 mg/L (COD=1000 mg/L), 22 hours, and 50 percent, respectively. Laboratory studies confirmed that each of the three mechanisms of air stripping, adsorption, and biodegradation may be involved in the removal of petroleum hydrocarbons by the MBBR system depending on hydrocarbon concentrations. More specifically, biological degradation was the dominant removal mechanism with lower loading rates (TPH=57 mg/l with a COD equal to 200 mg/l) while stripping became the dominant mechanism at higher loading rates (TPH=278 mg/l with a COD equal to 1,000 mg/l). It was found that under optimum conditions and at TPH=278 mg/L (and COD=1,000 mg/l), stripping removed 58%; biodegradation, 29%; and adsorption, 13% of the petroleum hydrocarbon content. It was observed that the removal of petroleum hydrocarbons by stripping and adsorption processes took place within the first process hour at the latest.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1175

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
Journal: 

WATER AND WASTEWATER

Issue Info: 
  • Year: 

    2017
  • Volume: 

    28
  • Issue: 

    3
  • Pages: 

    97-105
Measures: 
  • Citations: 

    0
  • Views: 

    963
  • Downloads: 

    0
Abstract: 

Groundwater vulnerability assessment is typically accomplished as a management tool to protect groundwater resources. In this research, the DRASTIC model which is an empirical one used for evaluating the potential of an aquifer for pollution was employed to evaluate the vulnerability of Shahrood alluvial aquifer. Moreover, the sensitivity of the model paramneters was assessed to identify the ones with greatest effect on vulnerability. The model layers including depth to groundwater table level, recharge, aquifer media, topography, impact of unsaturated zone, and hydraulic conductivity were prepared and classified in the ArcGIS software based on analyses of both the available data and the layer of surface soil texture using Aster satellite images. Once the vulnerability index was calculated, the sensitivity map of Shahroud aquifer vulnerability was analyzed using the two parameter removal and single parameter sensitivity methods. These were further verified by textural analysis of soil samples from different parts of the region. The layers with appropriate weights were overlaid and the DRASTIC index of the aquifer was estimated at 28 to 148. The highest vulnerability was detected in the northern margins and southwestern parts of the aquifer while other parts were characterized by medium to low vulnerability. The low nitrogen concentration observed in the farm areas and its rise to 45 mg/l in the northern stretches of the aquifer bear witness to the accuracy of the zoning rendered by the DRASTIC model. Based on the vulnerability map of Sharoud aquifer, it was found that 1.6% of the aquifer’s area has a very high vulnerability or potential for pollution followed by 10%, 28.8%, and 18.9% of the area were identified as having high, medium and low potentials for pollution, respecytively. The remaining (i.e., 40.5%) was found to have no risk of pollution.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 963

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 2
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button