Considering contamination of drinking water to arsenic in some villages of Iran. In order to develop a simple method for household water treatment in rural areas, efficiency of modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier isotherms for As (V) and As (III) were 0.964, 0.991 and 0.970, 0.978 respectively. These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V) at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98%; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As (V) and As(III) were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As (III) was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenic, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8. These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of arsenic from drinking water in simple household treatment systems in form of adsorptive column.