In this study, GMDH neural network based on genetic algorithm was used to predict the physical and mechanical properties of laboratory made particleboard. To predict the mechanical and physical properties of particleboard we used input parameters such as neural network including press closing time (10, 20 and 30 seconds), moisture content of the mat (8, 10, 12 and 14%) and press temperature (150, 160, 170 and 180oC) as the input data and the output data was the physical and mechanical properties. The efficiency of these techniques was evaluated with statistical criteria of mean square error (MSE), root mean square error, (RMSE), mean absolute deviation (MAD) and the correlation coefficient (R2). Results showed that the value of MSE, RMSE and MAD for MOR, IB, TS24h, TS2h, WA2h and WA24h is low. Errors obtained for the MOE model were very high. According to the results obtained, this model is not the appropriate for prediction of MOE. R2 values from the test and training set properties for MOR, IB, MOE, TS24h, TS2h, WA2h and WA24h was more than 0.91%, which reflects that the performance of these models is better.