The present paper reports numerical results of mixed-convection heat transfer with nanofluid in a horizontal ventilated cavity heated from below and provided with an thin partition on the heated surface. Free flow at cold temperature enters the cavity and takes heat from a heat source. Discretization of the governing equations are achieved through a finite volume method and solved with the SIMPLE method. The effects of the governing parameters, such as the Richardson number, , the baffle position from the inlet, , solid volume fraction, ,and the nanoparticle type on the fluid flow and heat transfer characteristics are studied in detail. The results show that increases in Richardson number results in reduction of the average Nusselt number and increase in solid concentration leads to increases in the average Nusselt number. Also, the results predict an optimal value for baffle position.