In this research, by considering the variable-speed pump, the effect of speed on pump performance, network hydraulics and energy consumption in a water distribution network in both single-objective and multi-objective models was investigated by using the new G-JPSO algorithm. The objective function in the single-objective problem is to minimize the amount of energy consumption throughout the day, and the decision variables are the amount of pump rounds in different hours of the day and night. In the multiobjective optimization problem, the first goal was to minimize the cost of consuming energy and the second goal was to maximize the hydraulic reliability. In order to determine optimal pump operation program, an optimization-simulation model based on G-JPSO optimization algorithm was developed. In this model, the algorithm was integrated into the MATLAB environment with the hydraulic part of the EPANET model as the reference of the commands and information. The proposed model was used in the Vanzyl distribution network and the optimal exploitation instructions were extracted and the results were compared with the JPSO algorithm and the ACO. The results of the paper showed that in the single-objective problem, the G-JPSO algorithm's results are 3. 28 and 0. 38 percent better than JPSO and ACO, respectively. In general, the energy consumption of variable-speed pumps was lowers the constant-speed pumps. In a multi-objective problem, in all optimization scenarios, the G-JPSO algorithm was able to achieve points in comparison with the ACO algorithm, which, in addition to cost reduction, has higher reliability.