Chromium is one of the most important pollutants in aquatic environments that, at high concentrations, cause different ecological threats and health risks for human society. Thus, it is very necessary to remove it from aquatic Solutions. Therefore, the aim of this study was to investigate the efficiency of removal hexavalent chromium by biological absorbers (oak, pomegranate, and egg shell), and the study of isotherm and kinetics of their absorption. In order to achieve to the optimal removal of chromium, the variables affecting on adsorption process such as pH, coagulation speed, reaction time and initial concentration of adsorbent material were investigated. Also, for adsorption isotherms and kinetics study the first order and second order pseudo kinematic models and Langmuir and Freundlich isotherms were used. The results showed removal efficiency of Cr increased with increasing the dose of adsorbent, contact time, and coagulation speed. But by changing the pH, depending on the absorbent type, the absorption efficiency was changed and the highest absorption efficiency for egg, oak and pomegranate shell was obtained at pH 10, 4 and 2, respectively. The kinetics was second-order for all three adsorbents and absorption isotherms from the Freundlich model for egg and pomegranate and for oak shell was more consistent with Langmuir model. According to the obtained results can be concluded that egg, oak and Pomegranate shell respectively, have high more efficiency in removing hexavalent chromium from aqueous solutions.