Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    1-9
Measures: 
  • Citations: 

    0
  • Views: 

    831
  • Downloads: 

    0
Abstract: 

In this paper, the dynamic response of a viscoelastic beam subjected to a moving distributed load has been studied. The viscoelastic properties of the beam have been considered as linear standard model in shear and incompressible in bulk. The stress components have been separated to the shear and dilatation components and as a result the governing equations in viscoelastic form has been obtained using direct method. These equations have been solved by the eigen function expansion method. In this research, according to the introduced dimensionless coefficients, a parametric study has been presented and the effects of the load velocity and viscoelastic materials have been investigated. The obtained results show the maximum decay corresponds to the cases that the first natural period equals to times that the relaxation time.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 831

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    11-19
Measures: 
  • Citations: 

    0
  • Views: 

    931
  • Downloads: 

    0
Abstract: 

In this paper, hydroforming process of bent tubes in T-shaped die is studied for pulsating and linear pressure paths by the finite element method. Forming Limit Diagrams (FLDs) and thickness distribution curves are used to investigate the effect of pulsating pressure on hydroforming process. In addition, the obtained numerical results are compared with experimental results of hydroforming of straight tubes with T-shape protrusions. It is shown that for tubes with similar bend radius and diameter of bent tube, the formability increases by linear pressure which means pulsating pressure is not so effective. But in the bent tubes whith bend radius larger than tube diameter, pulsating pressure improves formability in hydroforming process. Also, it is found that in hydroforming the pulsating pressure can not increase formability in any bent tube case. In some cases the linear pressure path is more effective for formability.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 931

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

AHMADFARD MOHAMMAD AMIN | KAZEMZADEH PARSI MOHAMMAD JAVAD | TAHAVVOR ALI REZA

Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    21-29
Measures: 
  • Citations: 

    0
  • Views: 

    617
  • Downloads: 

    0
Abstract: 

In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to solve these kinds of problems in conduction heat transfer in 2D objects. In order to train the neural network, some direct problems are solved by using the finite element method. In order to evaluate the applicability of the proposed method, different cases with different number of measuring points and different error levels are examined. The results show that the ANN can effectively be used in solving inverse geometry problems in heat conduction.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 617

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    31-39
Measures: 
  • Citations: 

    0
  • Views: 

    936
  • Downloads: 

    0
Abstract: 

Integral production of the thermoplastic parts with complicated geometric shapes by the processes such as injection molding and extrusion is not economical. It is better to divide the final shape into more simple parts and after production join them by an appropriate welding process. This research aims to study the tensile strength and toughness energy of high- density polyethylene parts which have been welded in different temperatures, pressures and times using hot plate method. The standard samples are separated from the welded samples by using the laser cutting device according to the tension standard ASTM D638-1 and then tested by the tension device. The results show that the tensile strength of welded parts is less than, and the toughness energy is more than not welded parts. Also, the tensile strength and the toughness energy increase with increasing the time and maintenance temperature. However, increasing the pressure causes the molten material between the two parts come out and overflow into the part edges. This results in decreasing the tensile strength and the toughness energy of the weld line.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 936

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    41-46
Measures: 
  • Citations: 

    0
  • Views: 

    2634
  • Downloads: 

    0
Abstract: 

The aim of this research work is to evaluate the effects of coolant including nano-powder material for the cooling purpose in milling process and comparing the results with the conventional coolant. Generation heat and weak heat transfer reduces the tool life and also deteriorate surface roughness during milling operation. To overcome this problem, it is necessary to use coolant for cooling as well as lubrication purposes. Due to limited heat removal rate from the work piece through the conventional coolant, some nano powder material is added to coolant, to improve the heat transfer coefficient. The added nano powder also increases machinability, decreases production time and improve surface roughness. In this paper nano fluid of copper with 99 percent purity added to Z1 coolant for machining of St37 work piece in milling machine. In this research, some factors such as rotational speed, feed and depth of cut in the three states of machining, with different coolant including Z1 and nano fluid and dry condition were investigated and finally temperature of machined work piece and its surface quality were evaluated. By comparing the obtained results it is evident that the heat removal rate and surface quality in the case of nano fluid are improved and furthermore the tool life as well as machining efficiency increases.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2634

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    47-57
Measures: 
  • Citations: 

    0
  • Views: 

    1433
  • Downloads: 

    0
Abstract: 

Four-roll bending process is usually used for manufacturing of seamed thick-walled and thin-walled cylinders. Due to complexity of this process, the analytical solution of plate bending in this process has not been developed completely. The existence of friction and multi-step processing makes it more difficult. Investigation of four-roll bending process using analytical and numerical methods is the main aim of current research. At first, using plate deformation theories, an analytical solution for four-roll bending process is extracted. By decomposing the deformation to elastic and elasto-plastic, the required bending moment is calculated. Considering the distribution of bending moment along the plate, the radius of bending is calculated considering spring back effects. The four-roll bending process is simulated by the finite element method. The simulation results show that the level of strain is less than the critical value and hence there are no damaged parts in the plate during process. Besides, bending radius of the plate after spring back is calculated and compared with the analytical values. Finally, for validation of analytical and numerical results, some experiments were conducted on aluminum. Results of this research show that both analytical and numerical methods are proper techniques for predicting plate behavior during four-roll bending.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1433

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    59-69
Measures: 
  • Citations: 

    0
  • Views: 

    995
  • Downloads: 

    0
Abstract: 

In this research, optimization process of axisymmetric extrusion dies is proposed. Plastic zone is analyzed using finite element method in the Eulerian system with flow formulation. The die profiles are defined by Bezier curves with six control points. Two effective functions are considered in this research, standard deviation of the strain rate and the rate of energy consumption during extrusion process. A coupled numerical approach of finite element analysis in Eulerian system and the non-gradient Nelder-Mead method is utilized to determine optimum die profiles. Results show that optimized die has higher uniformity in strain rate distribution and less strain values with respect to the non-optimum conical die. In the case of minimizing energy consumption rate, results show that for the die with constant and variable lengths and low friction, the die profile tends to the stream line. In die with variable length and high friction, friction has more effective role in optimization and the die length tends towards lower lengths during optimization.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 995

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    3
  • Issue: 

    1
  • Pages: 

    71-79
Measures: 
  • Citations: 

    0
  • Views: 

    1178
  • Downloads: 

    0
Abstract: 

Three important parameters in designing a closed die for forging process are ratio of width to flash thickness, ratio of height to billet diameter and the friction factor. In this paper the influences of these parameters on the required force for the forging and percentage of die filling were investigated. It was found that by controlling the flash dimension, the material loss is reduced and the percentage of die filling is increased. Also, an experimental model was simulated and analyzed by finite element method. To validate the numerical results obtained by this research, value of gained force from finite element method was compared with the obtained experimental results. In order to coordinate and connect between the mentioned parameters and obtain a performance function, a two layer neural network was used. Finally, by using neural network and genetic algorithm, the optimum sets of parameters which minimized the force and maximized the percentage of die filling were found. These values were compared with the experimental results of other researchers. The genetic algorithm has good correlation with the experimental method as well as it has presented acceptable estimation for effective parameters in the forging process.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1178

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button