Due to outstanding properties of g–TiAl intermetallic such as high resistance against fatigue, oxidation, corrosion, creep, dynamic vibration, high working temperature and also its application in aerospace and automotive industry, turbojet engines and blade manufacturing, in this paper, electrical discharge machining (EDM) of g–TiAl intermetallic by means of three kinds of tool electrodes including copper, graphite and aluminum is investigated, to compare the output characteristics of the machining process such as material removal rate, tool wear ratio, surface roughness and topography and EDS elemental analysis of machined surfaces. The results indicate that major elements in chemical composition of g–TiAl machined surfaces are including titanium, aluminum, carbon and oxygen. The variation of tool material has not significant effect on formation of different chemical compounds and phases or in other words surface modification of machined surface. While it mainly affects other aspects of output characteristics such as material removal rate, tool wear ratio and surface roughness.