In this paper, Ag-TiO2-Graphene (Ag-TiO2-G) photocatalyst is synthesized via an economic and green rout. Pranus Cerasus is applied as a green reducing agent due to the presence of anthocyanin pigment. The anthocyanin molecules are responsible for the red color of the prunus cerasus seeds. The nanocomposites were characterized by XRD, EDS mapping, DRS and TEM. In order to explore the presence of Ag, different mass ratio of Ag to in Ag-TiO2-G composite (5wt%, 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, and 50wt%) were synthesized and their performance on the Acid Orange 7 (AO7) photodegradation were compared with bare graphene. In addition, for investigation of the presence of graphene, the AgTiO2 was synthesized and compared with the Ag-TiO2-G composite from the photocatalytic performance point of view. Ag nanoparticles and graphene are two crucial factors in AO7 photodegradation. Finally, we showed that photodegradation of AO7 with photocatalyst depends on photogenerated holes.