داده های ریزآرایه نقش مؤثری در طبقه بندی و تشخیص انواع بافت های سرطانی ایفا می کنند. با این حال در پژوهش های مرتبط با سرطان، تعداد نسبتاً کم نمونه ها در مقایسه با تعداد بسیار زیاد ژن ها، باعث ایجاد مشکلاتی از قبیل کاهش کارایی طبقه بندها، افزایش هزینه های محاسباتی و پیچیدگی در طبقه بندی سلول های سرطانی خواهد شد. یک راهکار مناسب جهت افزایش کارایی طبقه بندها، حذف ژن ها ی نامربوط و انتخاب نمونه های مناسب برای آموزش طبقه بندها است. در این مقاله یک مدل ترکیبی بر پایه الگوریتم بهینه سازی جستجوی فاخته چندهدفه و خوشه بندی فازی برای طبقه بندی داده های ریزآرایه پیشنهاد شده است. در این مطالعه از نسخه دودویی الگوریتم جستجوی فاخته چندهدفه به منظور انتخاب ویژگی های مرتبط با بیماری و از نسخه پیوسته آن برای انتخاب تعداد نمونه های مناسب برای آموزش طبقه بندها استفاده شده است. به منظور تسریع در فرایند بهینه سازی و جلوگیری از گیرافتادن الگوریتم در بهینه های محلی، راهکار های ابتکاری جدیدی نیز به الگوریتم اضافه شده اند. برای بررسی عملکرد مدل پیشنهادی، شبیه سازی های متعددی بر روی شش مجموعه داده سرطانی انجام گرفته و نتایج آن با دیگر مقالات مقایسه شده است. نتایج به دست آمده نشان می دهند در بسیاری از موارد مدل پیشنهادی قادر است در مقایسه با سایر روش ها، با انتخاب مجموعه کوچک تری از ژن ها ی متمایز، منجر به افزایش کارایی طبقه بندها شود.