This paper presents molecular dynamics modeling for calculating viscosity of nanofluids containing copper nanoparticles. In the first case, the copper nanoparticles were located as a spherical region in water-based fluid module SPC. System under specified boundary conditions, and writing code by LAMMPS software, and nanofluid ratios of 3.2, 4.4, 6.9 and 9.1 percented by Brownian motion of atoms, was carried out. three popular potential function, Lennard-Jones, Coulomb, and embedded atom method were used. Between equilibrium molecule dynamic, and non- equilibrium molecule dynamic, (EMD) and Green-kubo formula were used to calculate viscosity. The results show that by increasing the amount of voloume fraction, viscosity increases. nanofluids in addition to other factors, such as volume fraction of particles in Brownian motion and clustering phenomenon, each in turn causes changes in viscosity. The simulation results were compared with other's works and found that the obtained results are remarkably accurate.