In this research, the single and turbulent surface jet is evaluated for discharge of dense current by evaluating the effect of various parameters on circular surface buoyant jet flow. To achieve the purposes of this research, a physical model with 3.2 m length, 0.6 m width and 0.9 m height was applied. Then, the experiments were conducted by using the nozzles with diameters of 5, 8 and 15 mm at different contraction angles. The final limit of horizontal length of jet flux to inlet of effluent position (plunge point position), Xp, the maximum of upper limit length, Xmax, and the maximum of inferior limit length were considered as important properties of path trajectory. Findings showed development of surface jet flux occurred in supercritical Froude Number. Hence, the trajectory properties including Xp, Xmax and Xmin was increased by 41, 40 and 45 percent with increase of contraction angle 15 into 90 degrees, respectively. Result of statistical analysis showed a nonlinear relationship exists as a satisfactory correlation between trajectory properties and jet flux parameters.