در این مقاله، از بیان تنک سیگنال EEG به منظور طبقه بندی مراحل خواب استفاده شده است. در این راستا دو روند کلی تنک سازی پیشنهاد شده و تاثیر آن ها بر روند تشخیص مراحل چهارگانه خواب بررسی شده است. روش پیشنهادی اول مبتنی بر به کارگیری روش تحلیل مولفه اصلی تنک (SPCA) برای حالت های به کارگیری ویژگی های مختلف، از جمله زمانی، فرکانسی و زمان-فرکانسی و اعمال به کلاس بندی ماشین بردار پشتیبان (SVM) است. روش پیشنهادی دوم بر اساس به کارگیری طبقه بندی کننده مبتنی بر بیان تنک (SRC) است که از الگوریتم پیگیر تطبیق متعامد (OMP) در مرحله ایجاد دیکشنری و بیان تنک بهره می برد. به منظور ارزیابی کارایی الگوریتم های پیشنهادی، عملکرد آن ها با الگوریتم های موجود مشابه مقایسه شده است و بدین منظور از داده های ثبت شده در پایگاه داده بین المللی PhysioNet استفاده شده است. مقایسه نتایج روش های پیشنهادی نشان دهنده بالاتر بودن دقت میانگین روش پیشنهادی اول نسبت به روش PCA و روش یادگیری عمیق به ترتیب %8. 36 و %8. 26 است. همچنین سرعت اجرای روش پیشنهادی دوم نسبت به دو روش مذکور %118 و %72 بالاتر است.