The use of photothermal effect is an appropriate method for generating solar steam without the use of fossil fuels. In this study, a graphene aerogel/Cu2S nanoflower composite was prepared and used for rapid water evaporation. The Cu2S nanoflowers were synthesized using a solvothermal method and characterized using XRD and SEM analyses. The optical properties of these materials were investigated using UV-vis, PL, and FTIR analyses. Additionally, the graphene aerogel was prepared by drying under ambient pressure. The composite of these two materials was prepared using a droplet casting method. To study the photothermal effect, these materials were exposed to visible light irradiation with an intensity of 2000 W/m2 for one hour. The temperature changes of different concentrations (10, 20, and 30 g/l) of these materials were compared to pure water, both in the presence and absence of light, and it was found that the presence of these materials in water leads to an increase in temperature changes and the rate of water evaporation. with an increase in the concentration of nano-flowers in water, the temperature showed a significant increase, reaching 48. 4 degrees Celsius at a concentration of 30 g/l, compared to 25 degrees Celsius initially. moreover, the amount of water mass reduction, indicating water evaporation, reached 3. 64 kg/m2 at the highest concentration. Furthermore, the graphene aerogel/Cu2S nanoflower composite was used to simultaneously investigate the effects of both materials in water at different concentrations, and the results showed after 60 minutes, the composite with a concentration of 30 g/l caused a temperature change of approximately 32 degrees Celsius, which is 8. 6 degrees higher than Cu2S alone and 4 degrees higher than graphene aerogel alone. The reduction in water mass in the presence of this composite under visible light irradiation at an intensity of 2000 W/m2 reached 3. 96 kg/m2.