In this research, the effects of torque tightening on the stress distribution in double lap simple bolted and hybrid (bolted-bonded) joints have been investigated numerically. In order to determine the bolt clamping force value due to tightening torque in simple bolted and hybrid joints, which is necessary in numerical simulation, an experimental approach has been proposed. To do so, two kinds of joints, i.e. double lap simple and hybrid joints were prepared. To determine the bolt clamping force or pretension resulting from the torque tightening, at different applied torques, for both kinds of joints a special experimental method was designed using a steel hollow cylinder that was placed between the nut and the plate. In order to obtain the stress distribution in the joint plates for both kinds of the joints, with two different amounts of tightening torque, three-dimensional finite element models were simulated by a general finite element code. The obtained results revealed that the amounts of resultant stresses were reduced by increasing the tightening torque due to compressive stresses. Furthermore, in the hybrid joints, the stress concentration around the hole is reduced significantly. Finally, the comparison of the obtained results, confirms that the hybrid joints have better static strength than simple joints for all levels of the tightening torque.