Polypyrrole-multiwall carbon nanotube (PPy-MWCNT) nanocomposites were chemically synthesized via in situ oxidative polymerization of pyrrole. Ammonium peroxydisulfate and p-toluenesulfonic acid were used as an initiator and surfactant dopant, respectively. The molar ratio of monomer unit to initiator and dopant was 1: 1: 1, and the percentage of MWCNT in PPy varied from 1 to 10 wt.%. PPy-MWCNT nanocomposites were characterized to study chemical structure, morphology, thermal, electrical, and surface properties. To accomplish this, the samples have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, four probe resistivity method, and atomic force microscopy. The results showed that PPy-MWCNT nanocomposites were successfully synthesized via in situ oxidative polymerization method, and also, electrical conductivity of nanocomposites was increased when the content of MWCNT increase.