Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    1-24
Measures: 
  • Citations: 

    1
  • Views: 

    652
  • Downloads: 

    0
Abstract: 

Background and Objective: Rapid urban expansion along with population growth, has significantly amplified the production of municipal solid waste (MSW) in recent years. Despite the importance of burying solid waste as one of the most efficient ways in waste management cycle, its basic standards have been neglected in many parts of Iran. Recently, the Geographic Information System (GIS) has been recognized as a suitable tool in landfill site selection studies. In addition, Multi-Criteria Decision Making (MCDM) has been introduced as a well-known technique to investigate complex decision-making issues such as landfill selection, and the Analytical Hierarchy Process (AHP) is one of the well-known methods of MCDM. In general, landfill siting based on GIS has two main screening steps including first, removing unsuitable land areas and then ranking remaining areas. Additionally, waste landfill siting mainly depends on information availability related to population characteristics. In this way, it is needed to forecast population in the future. Qazvin as a province in the central part of Iran, is facing a population growth in the recent decade. Comparing the population in 2011 and 2016, it showed an increase of about 1. 17 percent of average annual growth in Qazvin's population. Therefore, with regard to the increasing population in this newly established province, it is considered critical to conduct a landfill site selection procedure. To achieve the aim, the present research intended to establish a landfill site regarding environmental factors and using integrated GIS-AHP approach which incorporated into the population forecasting in Qazvin province. Materials and Methods: The present study was conducted in three main steps include; initial waste Landfill siting using Multi-Criteria Evaluation (MCE), determination of the required landfill area based on population forecasting up to 2046 and final locating of waste landfills using Single Objective Land Allocation (SOLA) in TerrSet software. In the first step, the initial Landfill siting was conducted by the integrated GIS-AHP approach during the process of identifying and selecting the criteria, weighting the criteria, standardizing the criteria and finally integrating the criteria with the Weighted Linear Combination (WLC) method. In the second step, the area required for waste disposal sites was estimated based on population growth rate, per capita waste generation (kg per day) and average groundwater depth. In order to forecast the population growth up to 2046, reports of Iran's Plan and Budget Organization was used. In the third step, the final sitting of the municipal solid waste was determined with a SOLA in TerrSet software. The initial suitability map was entered into the model as the base input. Also, the estimated area from the second step. In this study, two scenarios were implemented. In the first scenario, in order to select the appropriate locations, the condition of having the highest value of the map was applied, and in the second scenario, in addition to the mentioned condition, the need to have a 10 km buffer for each of the selected options was considered. Results and Discussion: According to the expert's opinions and environmental standards, seven ecological and socio-economic criteria were suggested that each criterion consists of several sub-criteria. Then by implementing the AHP method on the experts’ judgment, the final weight of each criterion and sub-criterion was obtained. After preparing the GIS layers, each of the invoice layers was standardized according to the functions in the fuzzy membership tool and was classified with a range of numbers from 0 to 255. The results showed that in the study area the combination of AHP and GIS for landfill siting is significantly compatible with field observations. GIS is a very powerful tool that could provide a quick assessment of the study area to determine the appropriate location for landfill. The selection of criteria was one of the most important steps in this research. The environmental factors should be considered along with economic factors in choosing a landfill site. Therefore, the eight main criteria of distance from the road, elevation, slope, distance from residential areas, distance from surface waters, distance from protected areas, geology, hydrology and land use were used in their research. The criteria were divided into three parts; morphological, environmental and socio-economic. In this research, in addition to the mentioned criteria, various natural and human parameters such as distance from energy transmission lines, distance from industrial towns and railways, etc. were also used to double the comprehensiveness of the present study. By integrating standardized GIS layers with WLC method, the initial map indicating the distribution of suitability of different sites to waste disposal location in Qazvin province was prepared. By implementing the AHP method into each criterion and combining in GIS, the waste disposal areas in the study area were classified into four classes. According to this classification, the initial map was divided into very good, appropriate, inappropriate and very poor areas. According to the initial suitability map, the cities of Takestan, Abik and Buin Zahra, with an area of 50. 15, 14. 55 and 54. 48 km2, respectively, had a good condition for landfill location. The suitable places for landfill were the flat territories near the urban and had the advantage of the appropriate access path. Then, using land use allocation algorithm, the best landfill site was identified in two scenarios and three location options for each scenario. In the first scenario, the maximum map value was applied to select the location options. In the second scenario, in addition to the mentioned condition, a 10 km buffer was considered for each location option. Finally, site number one of the first and second scenarios and site number three of the second scenario were identified as priorities. Site number one was selected in the range of Buin Zahra city and near the village of Elahabad. While site number three was located 15 km away from the waste management department of Qazvin city and near the Zinabad village. Conclusion: It should be noted that not only the final location of municipal solid waste landfills has not been determined in recent years, but also a comprehensive program in the field of reducing waste production and implementation of waste separation plans from the source in the studied cities has not been implemented. Formation of a future forecasting section on the organizational structure of landfill waste management systems can not only reduce environmental risks but also bring sustainability to economic and social resources.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 652

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    25-46
Measures: 
  • Citations: 

    0
  • Views: 

    578
  • Downloads: 

    0
Abstract: 

Background and Objective: Landslide as a terrifying disaster can cause human and economic losses and the destruction of cultural and natural heritage. While the need for a method to directly predict the location of landslides has vital importance but currently, the prediction is not possible. The zoning of landslide hazard can be an efficient indirect approach. This paper proposes a method for landslide hazard zoning based on the decision fusion and Analytical Hierarchy Process (AHP) in the Semirom of Isfahan province. Materials and Methods: In the first step of the proposed methodology of this research, GIS information layers of the study area are collected. Then by using of fuzzy and non-fuzzy hierarchical analysis method and based on expert knowledge, the layers and sub-layers were weighted. In addition, two different overlay methods including weighted overlay and fuzzy overlay are applied for zoning of the AHP and fuzzy AHP results. Combination of both AHP and fuzzy AHP methods with two overlay methods create four zoning maps for the area. The Fuzzy Overlay tool makes it possible for the analysis of the possibility of a phenomenon belonging to multiple sets in a multicriteria overlay analysis. Not only the fuzzy overlay determines the influential members in the occurrence of a phenomenon but also analyzes the relationships between the memberships of several sets. Weight overlapping is one of the most effective methods used to overlay analysis to address multiple-criteria questions such as location selection and appropriate models. This method will adopt the values in the input raster to a common evaluation criterion for suitability or priority, risk, or appropriate scale. The cell values of each row of inputs increase with the increase of importance of the raster. It also combines the resultant cells to produce the output raster. After obtaining four zoning maps, a decision fusion strategy is applied for the fusion of these maps. Decision fusion systems or in general data fusion or combination strategies combines various decisions made from different methods or data to ultimately make decisions that are more precise and reliable than the result obtained from a single decision. One of the most important and effective methods for integrating decisions is based on the concept of voting. In this method, one vote is assigned to each decision. The simplest form of this method is known as the majority voting. In this method, if all decision-making methods have the same weight and accuracy, the decision of all strategies for an input sample is considered to be the same weight, and the decision with the highest score will be introduced as the winning class for the input sample. Results and Discussion: The study area is located approximately 60 kilometers from Semirom city. Also, this area is located in Marbur River watershed. Generally, different factors can be effective in slope instability and landslide, which in this research, slope, aspect, distance to fault, distance to roads, distance to drainages, distance to residential areas, lithology and rainfall were selected for assessing the landslide phenomenon. These effective layers are obtained from information data such as Digital Elevation Model (DEM), fault lines, rivers location, streams location, residential areas, roads location, lithology and synoptic stations. The digital elevation model (DEM) of the region is prepared with 30 meters pixel size from the USGS website. By using DEM in GIS, slope and aspect maps in five classes are created. Faults map of the studied area is obtained from 1: 100000 geology map of the Geology organization center of the country. Also, by using Euclidean distance in GIS, distance to faults layer is created in five classes. For preparation of rainfall map, the rainfall content of the studied area has been used from the average rainfall data of the Iran Meteorological Organization in the last 10 years of 19 meteoroidal stations. Based on the rainfall information, the area is divided into five classes. Roads map of the area is obtained from 1: 25000 map of National Cartographic Center. The distance to road layer is created from roads map of the area and divided into five classes. For drainage and residential area maps, a 1: 25000 map from NCC is applied. Also, distance to residential area layer is created by this map in five classes. For assessment of the lithology in this area, a 1: 100000 geology map is applied. Conclusion: Results showed that the zoning methods provide satisfactory results, but eventually the results were improved with the decision fusion strategy. For validation our finding the results were compared with historical landslides. Based on the results, it was concluded that zoning by four different combinations: hierarchical analysis and overweight analysis, hierarchical analysis and fuzzy overlay, fuzzy hierarchical analysis and weighted overlay, and fuzzy hierarchical analysis and fuzzy overlaying, have a precision of 80%, 86%, 75% and 88% respectively. After integrating the results of these four methods, the accuracy of the zoning increased to 90%.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 578

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    47-64
Measures: 
  • Citations: 

    0
  • Views: 

    453
  • Downloads: 

    0
Abstract: 

Background and Objective: In recent years, the crisis caused by dust in the southeastern regions of the country has been one of the natural-human events affecting the daily lives of citizens and the economy of the region. Increasing access to various data processing sources has expanded dust modeling at various levels, including local, regional, and global levels, and has helped to understand the mechanism of complex natural systems. dust Modeling helps to identify the main factors that create it and the importance of each factor. One of these models that are used to detect the concentration and intensity of dust in the atmosphere and the range of this phenomenon and determine its origin is the dust model (NMMB / BSC). The purpose of this paper is to identify and monitor dust from the Gavkhoni basin by two methods of visual interpretation and tracking in satellite images using the mentioned model. Identifying areas with the possibility of dust and its synoptical study can be an important step in managing this phenomenon in the region. Materials and Methods: In order to determine the potential areas of high concentrations of dust in the region, first in the period of 2016-2016, pervasive storms in the region were determined on a monthly basis based on the Aerosol optical depth parameter (AOD). Then, by the parameter of the minimum visibility and continuity of dust events obtained from the information of synoptic stations of the Meteorological Organization, the days with the lowest field of view and the highest continuity in the specified months (months with the highest AOD concentration) were selected. The Aerosol optical depth was calculated by using the Modis sensor and the Deep Blue algorithm. The MMB / BSC-Dust model was used to identify the most dust suscribted areas in the Gavkhoni basin. With the help of this model, dust transfer routes were monitored for three hours within 72 hours after the occurrence. Accordingly, in the next step of 25 model output maps for each time period, a map with the highest dust concentration in the basin was determined. To test the relationship of these parameters to the high concentrations of dust the output was then compared with the Synoptical maps and dust images of the Modis sensor dust storm from the Worldview database. In Synoptical studies, the goal is explaining the key relationships between the atmosphere and the environment. In order to determine the atmospheric patterns in the basin on the studied dates, the geographical range of 20 to 50 degrees north and 40 to 65 degrees east to receive digital data was determined. The hourly data of winds of different atmospheric levels of 100, 500, 700 and 850 hectopascals for days with the highest dust concentration were obtained from NCEP / NCAR center and the obtained maps were compared and analyzed with each of the dust concentration patterns. Results and Discussion: The selected image of the 72-hour period on 4/6/2014 shows that the basin is affected by the southwestern regions of the country, especially the dust centers of Khuzestan and Iraq, which gradually affect the basin during the movement towards the central regions of the country. Images of the Modis sensor also confirmed the presence of this dust mass on the southwestern regions of the country and affected the basin on this date. The image of 4/25/2015 proved the existence of a dense dust mass in the southwestern regions of the country and the impact of the Gavkhoni basin from this mass. On this date, parts of the basin, including the eastern part of Gavkhoni Wetland and the center of the Little Spring Basin, have been producing dust. On this date, parts of the basin, including the eastern part of Gavkhoni Wetland and the center of the basin, have been a small source of dust. The dust event that occurred on 1/10/2016 shows that the basin is affected by dust sources in the Central Desert so that by moving the dense masses of dust from the central desert and the Black Desert, the basin was affected by them. And the central areas of the basin acted as a source of dust and contributed to the intensification of dust concentrations. As can be seen in the dust analysis, due to the low pressure in the center of Iran due to cyclonic rotation (counterclockwise in the northern hemisphere) on the north and south sides, the east wind and the west wind have dominated, respectively. The dominance of the western wind with orbital motion in dust storm events has been proven in most of the identified dates. In the most recent case, in 2016, we witnessed the expansion of a high-pressure center across the country and the change of this trend and the dominance of the east wind in the high levels of the atmosphere. An examination of the condition of the winds that took place on 4/25/2015 at 0-06 GMT shows the formation of centers with speeds higher than 12 m/s in the formation of dust centers. The winds blow from west to east and the dust passing through the basin originates from the western parts of the country, including the dust centers of Khuzestan and Iraq provinces. In this case, we have witnessed the dominance of unstable low-pressure centers on the surface of the basin, which can be one of the main factors in aggravating the dust phenomenon on the surface of the basin. Examination of omega winds (vertical winds on the ground) indicates the formation of an air ascent center on the range of the formation of high-speed wind nuclei and dust centers. The second incident occurred on 2/2/2015 at 3: 00 PM GMT. Examination of wind direction maps shows the formation of centers with a speed of more than 25 meters per second with west-east direction on the surface of the western regions of the country and Gavkhoni basin, which aggravates dust production in sensitive areas such as Khuzestan and its movement Towards the Gavkhooni basin and affecting the basin. Examination of wind conditions to high atmospheric levels also showed that the wind regime was constant while increasing its speed at all atmospheric levels. An examination of the maps of omega winds (vertical winds on the ground) and sea surface pressure indicates the formation of an airborne and unstable (low pressure) center on the region, thus helping to aggravate the dust situation in the region. An examination of the dust storm that took place on 1/10/2016 at 6: 00 PM GMT showed the formation of high wind speeds above 17 m/s in the eastern regions of the country, which are in the east-west direction at 850 ha Pascal level. he formation of these high-speed nuclei and the blowing of winds from the east to the basin have affected the Gavkhoni basin from the dust produced from the central desert and the black desert. Vertical winds also indicate the rising and falling currents and the movement of winds from high pressure (east) to low pressure (west) and the formation of east-west currents. Conclusion: The results of this study showed that the source of dust occurrence in Gawkhuni basin is the Khuzestan and Iraq dust production centers, central desert and small parts of the basin center and around Gavkhuni Wetland. In addition, a synoptic examination of suitable areas of dust occurrence revealed that at the dates of the dust storms, lowpressure zones and high-velocity cores are formed at different levels of the atmosphere over the area, which is associated with the direction of the winds and the movement of dense masses of dust toward the basin.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 453

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

EBRAHIMI ALI | MOTAMED VAZIRI BAHARAK | Nazemosadat Seyed Mohammad Jafar | AHMADI HASSAN

Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    65-86
Measures: 
  • Citations: 

    0
  • Views: 

    606
  • Downloads: 

    0
Abstract: 

Background and Objective: Land cover and soil moisture changes have a significant impact on land surface temperature (LST). Therefore, LST can be used to study land cover and desertification changes. Arsanjan County, which is located in the northeast of Fars province, has a relatively good forest and rangeland. Unfortunately, excessive harvesting of the groundwater resources and also reduced precipitation in this area caused to decrease water levels and dried up many wells in this area during recent years. So the area of the farmland and Bakhtegan Lake has decreased in this region during the last decades. However, so far, the condition of the LST and its relationship with land cover changes has not been assessed in Arsanjan County. In this study, spatialtemporal changes of LST and its relationship with vegetation and the water area of Bakhtegan Lake have been studied. Materials and Methods: The eleven images related to Level-1 data of Landsat satellite was taken from 2003 to 2018. Since the vegetation situation in the study area is in the best vegetation and water area condition in April and May, so the images related to these months were selected to check the fluctuation of vegetation cover and water level of Bakhtegan Lake. The data pre-processing was performed in three sections: geometric, radiometric and atmospheric correction by ENVI software. The FLAASH algorithm, which is one of the best methods of atmospheric correction, was applied for atmospheric correction. In this study, NDVI was used to estimate the amount of vegetation. The Planck algorithm method was applied to calculate the LST. The change detection process was done using the index differencing method. To classify the LST map and the temporal-spatial changes, the LST difference map was normalized. Then, the normalized image was categorized using the standard deviation parameter in five temperature classes. Results and Discussion: In the present study, 11 Landsat images were examined to investigate the spatial-temporal changes in land coverage and LST and the relationship between these two parameters from 2003 to 2018. The NDVI mean value was 0. 25 in 2003, which decreased to 0. 18 in 2018. On the other hand, the LST mean value had an upward trend as it increased from 29℃ in 2003 to 41. 7℃ in 2018. The NDVI mean value was 0. 66 in the farmland in 2003, however, its value reached to 0. 33 in 2018. In contrast, LST mean value increased in the farmland from 20. 9℃ in 2003 to 39. 5. 5℃ in 2018. Also, the LST mean value in the lake area increased from 20. 1℃ in 2003 to 36. 5 in 2018. Based on the results, the NDVI mean value in the rangeland and farmland decreased by 0. 07 and 0. 33, respectively, in 2018. However, due to the positive relationship between NDVI and LST in water-covered areas, the NDVI mean value increased by 0. 39 in Bakhtegan Lake area in 2018. In contrast, the LST mean value in the rangeland, farmland and Bakhtegan Lake increased by 12. 7℃ , 18. 6℃ and 16. 4℃ , respectively, in 2018 compared to 2003. The results indicated a negative relationship between NDVI and LST (R2= 0. 862). The LST value decreases by increasing NDVI value in the vegetated area. In contrast, there was a positive correlation between NDVI and LST in salt-marshes and barren areas. According to the results, the highest negative correlation was obtained for the farmland, which was-0. 94. The reason for this high correlation can be related to the high density of vegetation cover in agricultural areas. The low negative correlation between NDVI and LST in the rangeland indicates the low vegetation density in rangeland and forest area. In order to study the area of decrease or increase of LST in the farmland, rangeland and water classes, the LST difference map was classified to five categories including very low temperature, low temperature, medium temperature, high temperature and very high temperature. According to the result of LST classification, the highest area was related to the moderate temperature class in all land covers, so that the highest area of this temperature class was associated with the rangeland by 86733 hectares. Since the vegetation density, especially in the farmland, had a significant decrease in 2018 compared to 2003, the area of high and very high-temperature classes increased in 2018, so that their area reached to 4625 ha and 7192 ha, respectively, in the farmland. Also, since the water area of the lake decreased in 2018 compared to 2003, the area of high and very high-temperature classes in these classes reached to 1824 ha and 3919 ha, respectively. Conclusion: According to the results, the NDVI mean value in 2018 decreased in the farmland and rangeland and increased in the Bakhtegan Lake area. In contrast, the LST increased in the mentioned areas. The results of the LST classification showed that the highest amount of LST change is related to the moderate temperature class. Since the vegetation density, especially in the agricultural area, had a significant decrease in 2018 compared to 2003, the results showed that the area of high and very high temperatures had a higher increase than low and very low temperatures. Also, since the lake's water level decreased in 2018 compared to 2003, the area of high and very high temperatures in these classes increased. The findings show that there is a negative correlation between vegetation and land surface temperatures.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 606

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    87-113
Measures: 
  • Citations: 

    0
  • Views: 

    490
  • Downloads: 

    0
Abstract: 

Background and Objective: Climate change has had a negative impact on agricultural products and environmental systems in different countries. Plant phenology describes the periodical plant life events in relation to living and non-living factors. Phenology is one of the most sensitive biological indicators for studying the effect of global warming on terrestrial ecosystems, as it represents the exchange of energy, carbon, and water vapor between low levels of the atmosphere and the biosphere. Plants phenological changes can have a wide range of effects on environmental processes, agriculture, forestry, food supply, human health and the global economy. There are two common approaches to monitoring vegetation phenology. The first approach used in many previous phenology studies is based on field studies and recording annual changes in phenological events in response to environmental variables. So far, the phenological components changes of Iran's vegetation coverages in response to climate change and global warming have not been studied. The purpose of this study is to determine the changes of each component of Iranian vegetation phenology This approach is suitable for small scales with a limited number of sampling sites and is not only inefficient and inaccurate for large-scale studies but also costly and impossible in some areas. The second approach, developed in recent years, is the use of satellite imagery and remote sensing technology. using NDVI time series of AVHRR sensor. The results of this study can be used in determining the date of cultivation season, environment, rangelands and water resources management, and finally useful and practical recommendations to farmers. Materials and Methods: In this study, daily NDVI product of AVHRR sensor, called AVH13C1, was used with a spatial resolution of 0. 05 by 0. 05 degrees. To investigate the changes in phenological components of Iranian vegetation, four one-year time series related to 1982 to 1985 years (namely as past time) and 2015-2018 years (namely as present time) were used. Extraction of phenological components from the time series of vegetation indices initially requires continuous gap-free data. The HANTS algorithm was used to reconstruct the gaps and outliers from the time series. Then, in order to extract different phenological components, Timsat software was used. The beginning of the season, end of the season, length of the season, base value, time of mid of the season, maximum value, the seasonal amplitude, value for the start of the season, rate of increase at the beginning of the season and rate of decrease at the end of the season were extracted using Timsat software in each one-year time series, were extracted using Timsat software in each one-year time series, and then the four-year average of the values of these parameters in the past time series was compared to the present time series. Results and Discussion: Comparison of the four-year average of phenological components of the time for the start of the season, the time for the end of the season, the Length of the season and the time for the mid of the season in Iran showed that these indicators decreased by 12, 19, 7 and 13 days, respectively. The rate of changes of these components in lowland areas with an altitude of less than 1500 meters are completely different from highland areas which include Alborz and Zagros chains. So that, from an altitude of 1500 meters and above, the time for the start of the season, the length of the season and the time for the mid of the season in the Alborz and Zagros chains have decreased to an average of 38, 46 and 19 days, respectively. In the lowlands area near to the Persian Gulf and the Caspian Sea, the phenological components of the time for the end of the season and the length of the season have increased by approximately 40 and 44 days, respectively. The prolongation of the growing season has been attributed to various climatic factors, especially global warming due to increased greenhouse gases or water availability. In Iran, in most areas, the beginning of the growing season, especially in the Alborz and Zagros highlands, where the temperature is a limiting factor, has decreased. But unlike some studies conducted outside of Iran, the time for the end of the season, the length of the season and the time for the mid of the season have also decreased. This indicates that in arid and semi-arid regions such as Iran, in the middle and final stages of plant growth, moisture and rainfall are limiting factors for growth. In areas such as the Persian Gulf and the Caspian Sea, where low humidity has not been a limiting factor, the end of the growing season and the length of the growing season have also increased. Based on the results, the phenological components such as seasonal amplitude, maximum value, base value, value for the start of the season, rate of increase at the beginning of the season and rate of decrease at the end of the season have increased in Alborz and Zagros heights. This component is generally reduced to areas with altitudes below 1500. It seems that in arid and semi-arid regions, the high temperature can also increase the evapotranspiration of the plant, which causes a lack of moisture in the soil. Therefore, at the area with high altitudes that temperature is a controlling factor at the beginning of the growing season, the increasing temperature in present time series has led to increased plant growth and ecosystem production capacity, and phenological parameters such as growing season range, maximum growth rate, base value and the value at the starting point of growth have increased. However, in lowland areas, as well as at the end of the plant growth period in high altitudes, the increasing temperature has led to increased evapotranspiration and reduced the seasonal amplitude, maximum value, basal value and value for the start of the season. Conclusion: Changes in phenological parameters such as the beginning of the season, the time for the end of the season and the length of the season can have a negative impact on the agricultural products and environmental systems. The recent earlier beginning of the growing season compared to the last 35 years can be a significant threat to the agricultural and horticultural products, because cold and frost are the most important climatic parameters in the field of agricultural climate. As a result, it reduces the possibility of producing many agricultural and horticultural products in vulnerable areas. In general, the results of the present study show a series of interconnected events caused by climate change and increase in temperature in various components of phenology in the Alborz and Zagros highlands, as well as in lowland and plain areas, especially in the Persian Gulf and the Caspian Sea.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 490

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    11
  • Issue: 

    4 (41)
  • Pages: 

    114-136
Measures: 
  • Citations: 

    0
  • Views: 

    619
  • Downloads: 

    0
Abstract: 

Background and Objective: Over the past two decades, the intense need for land surface temperature information for environmental studies and management and planning activities has made estimating the land surface temperature one of the most important scientific topics. On the other hand, different methods have been proposed to estimate the land surface temperature, each of which has resulted in different results for different regions. In this study, the algorithms that have had acceptable results in different studies have been selected and evaluated. In the field of thermal studies, what is considered as a major defect in monitoring the land surface temperature is the lack of sufficient meteorological stations to know the temperature values in places without stations and information limitations in preparing temperature data, especially for large areas. The study area is also facing this shortage, and this limitation further highlights the importance of the topic selected for this study to estimate the surface temperature using remote sensing technology. Verification and validation of results obtained from estimating the land surface temperature are other basic and discussed topics in thermal studies. The purpose of this study is an estimation of temperature in Ardabil city and evaluate the accuracy of the four singlechannel algorithms, the improved mono-window, the Planck's inversion function method and the radiative transfer equation (RTE) method, to compare the accuracy of the two Landsat 5 and Landsat 8 satellites in estimating the land surface temperature. Materials and Methods: Three types of data have been used in this study; Landsat 5 and 8 satellite images, data of two meteorological stations and ground data harvested with a digital thermometer. The images used are from the two satellites Landsat 5 and Landsat 8 with a time interval of 19 years. The meteorological data used were obtained from two synoptic stations in the study area. In addition to land surface temperature, relative humidity, minimum temperature and maximum temperature data of 24 hours were also obtained on two dates. Also, two points of the study area were selected and land surface temperature in the position of these two stations simultaneously with the satellite Recorded from two digital thermometers. MODTRAN web version calculator software version 6 has been used to model the radiation and the amount of atmospheric transmission. Emissivity with two methods of LSE methods based on NDVI and LSE NDVI Thresholds Method and land surface temperature with four algorithms: single-channel algorithms, An Improved mono-window, inversion of Planck’ s function and radiative transfer equation using band 6 Landsat 5 and band 10 Landsat 8 bands. It was coded in MATLAB software for 2000 and 2019. Finally, the accuracy of the algorithms was evaluated using synoptic station surface temperature data and field sampling. Results and Discussion: The collected data and results are analyzed and while presenting the output maps, the accuracy of the methods with terrestrial and meteorological data as well as the accuracy of Landsat 5 and Landsat 8 satellites in estimating the land surface temperature has been compared and evaluated. The results showed that for the three single-channel algorithms, the inversion of Planck’ s function and RTE, the first method of emission and for the An Improved Mono-Window algorithm, the second method of emission had a higher accuracy. Land surface temperature data obtained from meteorological stations in 2000 differ by 12 minutes in terms of time and by 2019 differ by 4 minutes in terms of satellite transit time. The first meteorological station is located somewhat within the city limits and according to the results, it seems that the most important factor is the greater difference between the data of the first station and the estimated LST compared to the second station is the same factor because the heterogeneity of pixels and large changes in levels in urban areas interfere with a pixel value. And subsequently increases the likelihood of errors in estimating surface temperature within the urban anthropogenic range. For the ground station, two points with a homogeneous environment and outside the urban area with agricultural use (alfalfa) and barren use of the harvested product were selected and their surface temperature was measured at the same time as the satellite. The output results of land surface temperature estimation were compared and evaluated with two synoptic stations and two ground stations. In both histories, the single-channel algorithm showed the least difference with the temperature recording stations. Conclusion: In this research, using Landsat 5 and Landsat 8 satellite images, four algorithms for estimating the land surface temperature of the earth, including single-channel algorithms, An Improved mono-window, inversion of Planck’ s function and radiative transfer equation and land surface temperature maps of Ardabil city for two 2000 and 2019 were coded and extracted in MATLAB software environment. The band 6 Landsat 5 satellite was used for 2000 and the band 10 Landsat 8 satellite was used for 2019 due to less noise than the 11th band and the proximity of 9. 66 (which is the highest radiation in this range). Comparison of land surface temperature maps obtained by the algorithms with synoptic and ground stations showed that in both 2000 and 2019, the single-channel algorithm was more accurate than the other methods. Comparison of the results of the single-channel method with the stations shows a difference of +2. 5 and 2-with stations 1 and 2 for the year 2000 and a temperature difference of +3. 3, +0. 9, 1-and-0. 9. Shows stations 1, 2, 3 and 4 for 2019, respectively. It seems that the direct use of atmospheric transmittance coefficients in the singlechannel method process has been effective in the high accuracy of this method. In terms of accuracy, after the single-channel algorithm, the An Improved Mono-Window method, the RTE algorithm, and finally the Planck function inverse correlation algorithm were placed, respectively. The results of comparing the output of all four algorithms with the data of stations 1, 2, 3 and 4, show that the ground stations harvested with a digital thermometer are more accurate than the data of meteorological stations. One of the reasons for this is the location of meteorological stations (especially, Station_1) in the urban area due to the heterogeneity of the urban environment and the possibility of pixel interference and temperature interference of land uses, while ground stations from the out-of-town area. And was selected from an environment with homogeneous pixels (barren and agricultural). Also, the results of all four algorithms extracted from the Landsat 8 image show more accuracy compared to the results of the four algorithms obtained from the Landsat 5 image, and due to the improved spatial resolution of the TIRS sensor compared to the TM, the TIRS sensor output is more accurate, It was predictable.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 619

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button