Floods are one of the biggest global problems, so with the increasing intensity and frequency of floods, global concerns about increased mortality and economic losses due to floods have increased. In this research, using geographic information system (GIS), satellite images, synoptic station data, hierarchical analysis (AHP), and layer integration (WLC) method, flooding potential of Qarah_su catchment modeling Has been. The final flood risk map was prepared based on a combination of climatic and physical factors and elements, i. e., ten factors of vegetation, altitude, flood channel, geology, land use, rainfall, distance from the river, slope, soil, and drainage density. The weight of each criterion was used by the Analytic Hierarchy Process (AHP), and the weighted linear composition (WLC) method was used for spatial modeling and layer integration to prepare the flood potential map. The results of flood risk zoning showed that the 4th class as a high-risk category with 21. 7% and the 5th class with a very high flood potential with 8. 4%, more in the northern mountainous areas. And are located in the center of the region. In total, about 31% of the catchment area is covered by high to very high-risk flood areas, and because they have the most considerable role in runoff production, they should be given special attention in terms of watershed management. Classes one to three with low to medium flooding potential are located in low-lying areas, slopes, and plains of the center, south, and west of the basin and cover more than 69% of the area.